Human Pose Estimation Method Based on Non-Local High-Resolution Networks
SUN Qixiang, ZHANG Ruizhe, HE Ning, ZHANG Congcong
1.Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing 100101, China
2.Smart City College, Beijing Union University, Beijing 100101, China
SUN Qixiang, ZHANG Ruizhe, HE Ning, ZHANG Congcong. Human Pose Estimation Method Based on Non-Local High-Resolution Networks[J]. Computer Engineering and Applications, 2022, 58(13): 227-234.
[1] 王冉.基于深度卷积神经网络的人体姿势估计研究[D].成都:电子科技大学,2016.
WANG R.Human posture estimation based on deep convolutional neural network[D].Chengdu:University of Electronic Science and Technology of China,2016.
[2] FANG H S,XIE S Q,TAI Y W,et al.RMPE:Regional multi-person pose estimation[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision.Piscataway:IEEE,2017:2334-2343.
[3] CHEN Y L,WANG Z C,PENG Y X,et al.Cascaded pyramid network for multi-person pose estimation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2018:7103-7112.
[4] HUANG S,GONG M,TAO D.A coarse-fine network for key point localization[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision.Piscataway:IEEE,2017:3028-3037.
[5] XIAO B,WU H,WEI Y.Simple baselines for human pose estimation and tracking[C]//Proceedings of the 2018 European Conference on Computer Vision.Cham:Springer,2018:466-481.
[6] NEWELL A,YANG K,DENG J.Stacked hourglass networks for human pose estimation[C]//Proceedings of the 2016 European Conference on Computer Vision.Cham:Springer,2016:483-499.
[7] YANG W,SHUAN L,OUYANG W L,et al.Learning feature pyramids for human pose estimation[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision.Piscataway:IEEE,2017:1281-1290.
[8] PISHCHULIN L,ELDAR I,SIYU T,et al.DeepCut:Joint subset partition and labeling for multi person pose estimation[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2016:4929-4937.
[9] IQBAL U,GALL J.Multi-person pose estimation with local joint-to-person associations[C]//Proceedings of the 2016 European Conference on Computer Vision.Cham:Springer,2016:627-642.
[10] INSAFUTDINOV E,LEONID P,BJOERN A,et al.DeeperCut:A deeper,stronger,and faster multi-person pose estimation model[C]//Proceedings of the 2016 European Conference on Computer Vision.Cham:Springer,2016:34-50.
[11] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2016:770-778.
[12] LEVINKOV E,JONAS U,SIYU T,et al.Joint graph decomposition & node labeling:Problem,algorithms,applications[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2017:6012-6020.
[13] VARADARAJAN S,PARUAL D,OMESH T.A greedy part assignment algorithm for real-time multi-person 2D pose estimation[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision.Piscataway:IEEE,2018:418-426.
[14] CAO Z,TOMAS S,WEI S E,et al.Realtime multi-person 2D pose estimation using part affinity fields[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2017:7291-7299.
[15] NEWELL A,HUANG Z,JIA D.Associative embedding:End-to-end learning for joint detection and grouping[C]//Advances in Neural Information Processing Systems,2017:2277-2287.
[16] XIA F T,PENG W,CHEN X J,et al.Joint multi-person posee estimation and semantic part segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2017:6769-6778.
[17] PAPANDREOU G,ZHU T,CHEN L C,et al.PersonLab:Person pose estimation and instance segmentation with a bottom-up,part-based,geometric embedding model[C]//Proceedings of the 2018 European Conference on Computer Vision.Cham:Springer,2018:269-286.
[18] TANG W,PEI Y,YING W.Deeply learned compositional models for human pose estimation[C]//Proceedings of the 2018 European Conference on Computer Vision.Cham:Springer,2018:190-206.
[19] ANDRILUKA M,LEONID P,PETER G,et al.2D human pose estimation:new benchmark and state of the art analysis[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2014:3686-3693.
[20] LIN T Y,MICHAEL M,SERGE B,et al.Microsoft COCO:Common objects in context[C]//Proceedings of the 2014 European Conference on Computer Vision.Cham:Springer,2014:740-755.
[21] SUN K,BIN X,DONG L,et al.Deep high-resolution representation learning for human pose estimation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2019:5693-5703.
[22] BUADES A,BARTOMEU C,MOREL J M.A non-local algorithm for image denoising[C]//Proceeding of the 2005 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2005:60-65.
[23] WANG X L,ROSS G,ABHINAV G,et al.Non-local neural networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2018:7794-7803.
[24] WEI S E,VARUN R,TAKEO K,et al.Convolutional pose machines[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2016:4724-4732.
[25] KINGMA D P,JIMMY B.Adam:A method for stochastic optimization[J].arXiv:1412.6980,2014.