WANG Yonggui, CAI Yongwang, WANG Yang. Hybrid Recommendation Algorithm Combining Multi-Semantic Trust and Global Knowledge[J]. Computer Engineering and Applications, 2022, 58(13): 102-111.
[1] LIU X C,SU X,MA J M,et al.Information filtering based on eliminating redundant diffusion and compensating balance[J].International Journal of Modern Physics B,2019,33(13):1950129.
[2] ZHANG H F,ZHOU P,JIAN Y M.Collaborative filtering recommendation algorithm based on class correlation distance[J].Recent Advances in Computer Science and Communications,2021,14(3):887-894.
[3] MASSA P,AVESANI P.Trust-aware recommender systems[C]//Proceedings of the 2007 ACM Conference on Recommender Systems,2007:17-24.
[4] MORADI P,AHMADIAN S.A reliability-based recommendation method to improve trust-aware recommender systems[J].Expert Systems with Applications,2015,42(21):7386-7398.
[5] YANG B,LEI Y,LIU J M,et al.Social collaborative filtering by trust[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(8):1633-1647.
[6] 徐毅,叶卫根,戴鑫,等.融合用户信任度与相似度的推荐算法研究[J].小型微型计算机系统,2018,39(1):78-83.
XU Y,YE W G,DAI X,et al.Recommendation algorithm incorporating user trust and user similarity[J].Journal of Chinese Computer Systems,2018,39(1):78-83.
[7] 李熠晨,陈莉,石晨晨,等.采用信任网络增强的协同过滤算法[J].计算机应用研究,2018,35(1):116-120.
LI Y C,CHEN L,SHI C C,et al.Enhanced collaborative filtering algorithm adopting trust network[J].Application Research of Computers,2018,35(1):116-120.
[8] 吴航,江红.融合潜在社交信任模型的协同过滤推荐[J].计算机工程与应用,2019,55(20):114-121.
WU H,JIANG H.Collaborative filtering recommendation integrating potential social trust model[J].Computer Engineering and Applications,2019,55(20):114-121.
[9] MA G,WANG Y,ZHENG X,et al.A trust-aware latent space mapping approach for cross-domain recommendation[J].Neurocomputing,2020,431(4):100-110.
[10] 张岐山,朱猛.融合时间加权信任与用户偏好的协同过滤算法[J].计算机工程与应用,2022,58(3):112-188.
ZHANG Q S,ZHU M.Collaborative filtering algorithm combining time-weighted trust and user preferences[J].Computer Engineering and Applications,2022,58(3):112-188.
[11] BOBADILLA J,SERRADILLA F,BERNAL J.A new collaborative filtering metric that improves the behavior of recommender systems[J].Knowledge-Based Systems,2010,23(6):520-528.
[12] 陈功平,王红.改进Pearson相关系数的个性化推荐算法[J].山东农业大学学报(自然科学版),2016,47(6):940-944.
CHEN G P,WANG H.A personalized recommendation algorithm on improving Pearson correlation coefficient[J].Journal of Shandong Agricultural University(Natual Science Edition),2016,47(6):940-944.
[13] BAG S,KUMAR S K,TIWARIM K.An efficient recommendation generation using relevant Jaccard similarity[J].Information Sciences,2019,483:53-64.
[14] 李昆仑,赵佳耀,王萌萌,等.结合半监督AP聚类和改进相似度的推荐算法[J].小型微型计算机系统,2021,42(7):1396-1401.
LI K L,ZHAO J Y,WAGN M M,et al.Recommendation algorithm combining semi-supervised AP clustering and improved similarity[J].Journal of Chinese Computer Systems,2021,42(7):1396-1401.
[15] 孙传明,周炎,涂燕.基于混合协同过滤的个性化推荐方法研究[J].华中师范大学学报(自然科学版),2020,54(6):956-962.
SUN C M,ZHOU Y,TU Y.Research on personalized recommendation method based on hybrid collaborative filtering[J].Journal of Huazhong Normal University(Natural Science),2020,54(6):956-962.
[16] SUN Y,HAN J,ZHAO P,et al.RankClus:Integrating clustering with ranking for heterogeneous information network analysis[C]//Proceedings of the 12th International Conference on Extending Database Technology Advances in Database Technology,2009:565-576.
[17] 刘云枫,孙平,葛志远.异构信息网络推荐研究进展[J].情报科学,2020,38(6):151-157.
LIU Y F,SUN P,NIE Z Y.Literature review of heterogeneous information network recommendation[J].Information Science,2020,38(6):151-157.
[18] SUN Y,HAN J,YAN X,et al.Pathsim:Meta path-based top-k similarity search in heterogeneous information networks[J].Proceedings of the VLDB Endowment,2011,4(11):992-1003.
[19] SHI C,KONG X N,HUANG Y,et al.HeteSim:A general framework for relevance measure in heterogeneous networks[J].IEEE Transactions on Knowledge and Data Engineering,2014,26(10):2479-2492.
[20] 姚迪,张超,黄建辉,等.时空数据语义理解:技术与应用[J].软件学报,2018,29(7):2018-2045.
YAO D,ZHANG C,HUAGN J H,et al.Semantic understanding of spatio-temporal data:Technology & application[J].Journal of Software,2018,29(7):2018-2045.
[21] SHI C,ZHANG Z Q,JI Y G,et al.SemRec:A personalized semantic recommendation method based on weighted heterogeneous information networks[C]//Proceedings of Conference on World Wide Web,2018:1-32.
[22] LIU H F,HU Z,AHMAD M,et al.A new user similarity model to improve the accuracy of collaborative filtering[J].Knowledge-Based Sysems,2014,56:156-166.
[23] WANG D W,YIH Y,VENTRESCA M.Improving neighbor-based collaborative filtering by using a hybrid similarity measurement[J].Expert Systems with Applications,2020,160:113651.
[24] BREESE J S.Empirical analysis of predictive algorithms for collaborative filtering[C]//Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence,1998:43-52.
[25] LI Y K,LIU J M,REN J D,et al.A novel implicit trust recommendation approach for rating prediction[J].IEEE Access,2020,8:98305-98315.