Emotion Recognition of EEG Based on Ensemble CapsNet
CHEN Qin, CHEN Lanlan, JIANG Runqiang
Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
[1] PICARD R W,HEALEY J.Affective computing[J].Personal Technologies,1997,1(4):231-240.
[2] 卢官明,袁亮,杨文娟.基于长短期记忆和卷积神经网络的语音情感识别[J].南京邮电大学学报(自然科学版),2018,38(5):63-69.
LU G M,YUAN L,YANG W J.Speech emotion recognition based on long short-term memory and convolutional neural networks[J].Journal of Nanjing University of Posts and Telecommunications(Natural Science),2018,38(5):63-69.
[3] MAO Q R,PAN X Y,ZHAN Y Z.Using Kinect for real-time emotion recognition via facial expression[J].Frontiers of Information Technology Electronic Engineering,2015,16(4):272-283.
[4] 姜明星,胡敏,王晓华,等.视频序列中表情和姿态的双模态情感识别[J].激光与光电子学进展,2018,55(7):167-174.
JIANG M X,HU M,WANG X H,et al.Dual-modal emotion recognition based on facial expression and body posture in video sequences[J].Laser & Optoelectronics Progress,2018,55(7):167-174.
[5] 张雪英,王薇蓉,孙颖,等.面向脑电情感识别的改进多分类RVM模型研究[J].计算机工程与应用,2019,55(9):112-117.
ZHANG X Y,WANG W R,SUN Y,et al.Research om improved multi-classification RVM for emotional recognition of EEG signal[J].Computer Engineering and Applications,2019,55(9):112-117.
[6] PRASHANT L,ARUN K S.An approach to EEG based emotion recognition and classification using kernel density estimation[J].Procedia Computer Science,2015,48:574-581.
[7] AHMET M,AYDIN A.Emotion recognition from EEG signals by using multivariate empirical mode decomposition[J].Pattern Analysis and Applications,2018,21(1):18-89.
[8] ZHANG J H,CHEN M,ZHAO S K.ReliefF-based EEG sensor selection methods for emotion recognition[J].Sensors(Basel,Switzerland),2016,16(10):264-267.
[9] 项伟,吴迎年.基于改进共空间模式与深度信念网络的脑电信号识别算法研究[J].中国科学:信息科学,2018,48(7):919-931.
XIANG W,WU Y N.Research on EEG recognition based on improved-common spatial patterns and deep-belief network algorithm[J].Scientia Sinica Informationis,2018,48(7):919-931.
[10] ZAHRA A,ALIN M N.A self-organized recurrent neural network for estimating the effective connectivity and its application to EEG data[J].Computers in Biology and Medicine,2019,110:93-107.
[11] MAMMONE N,IERACITANO C,MORABITO F C,et al.A deep CNN approach to decode motor preparation of upper limbs from time-frequency maps of EEG signals at source level[J].Neural Networks,2020,124:357-372.
[12] GOPAL C J,RATNA S,ANUPAM A.A 1D-CNN-spectrogram based approach for seizure detection from EEG signal[J].Procedia Computer Science,2020,167:403-412.
[13] MICHIELLI N,ACHARYA U R,MOLINARI F.Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals[J].Computers in Biology and Medicine,2019,106:71-81.
[14] ZHENG W Z,LU B L.Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks[J].IEEE Transactions on Autonomous Mental Development,2015,7(3):162-175.
[15] TRIPATHI S,ACHARYA S,SHARMA R D.Using deep and convolutional neural networks for accurate emotion classification on DEAP dataset[C]//Twenty-Ninth IAAI Conference,2017:4746-4752.
[16] KWON Y H,SHIN S B,KIM S D.Electroencephalography based fusion two-dimensional (2D)-convolution neural networks(CNN) model for emotion recognition system[J].Sensors(Basel,Switzerland),2018,18(5):383-390.
[17] 李幼军,黄佳进,王海渊,等.基于SAE和LSTM RNN的多模态生理信号融合和情感识别研究[J].通信学报,2017,38(12):109-120.
LI Y J,HUANG J J,WANG H Y,et al.Study of emotion recognition based on fusion multi-modal bio-signal with SAE and LSTM recurrent neural network[J].Journal on Communications,2017,38(12):109-120.
[18] 蔡冬丽,钟清华,朱永升,等.三维输入卷积神经网络脑电信号情感识别[J].计算机工程与应用,2021,57(5):161-167.
CAI D L,ZHONG Q H,ZHU Y S,et al.EEG emotion recognition using convolutional neural network with 3D input[J].Computer Engineering and Applications,2021,57(5):161-167.
[19] CHEN G,WANG W,WANG Z.Two-dimensional discrete feature based spatial attention CapsNet for sEMG signal recognition[J].Applied Intelligence,2020,50(10):3503-3520.
[20] KOELSTRA S,MUHL C,SOLEYMANI M,et al.A database for emotion analysis using physiological signals[J].IEEE Transactions on Affective Computing,2012,3(1):81-89.
[21] ZHONG Y,ZHAO M Y,WANG Y X,et al.Recognition of emotions using multimodal physiological signals and an ensemble deep learning model[J].Computer Methods and Programs in Biomedicine,2017,140:93-110.
[22] 魏琛,陈兰岚,张傲.基于集成卷积神经网络的脑电情感识别[J].华东理工大学学报(自然科学版),2019,45(4):614-622.
WEI C,CHEN L L,ZHANG A.Emotion recognition of EEG based on ensemble convolutional neural networks[J].Journal of East China University of Science and Technology(Natural Science),2019,45(4):614-622.
[23] 苏建新.基于脑电信号的情绪识别研究[D].南京:南京邮电大学,2015.
SU J X.Emotion recognition research based on EEG signalD].Nanjing:Nanjing University of Posts and Telecommunications,2015.
[24] LI X,SONG D W,ZHANG P,et al.Emotion recognition from multi-channel EEG data through convolutional recurrent neural network[C]//Proceedings of the 2016 IEEE International Conference on Bioinformatics and Bio-Medicine(BIBM),Shenzhen,China,2016:352-359.
[25] LIU W,ZHENG L Z,LU B L.Multimodal emotion recognition using multimodal deep learning[C]//International Conference on Neural Information Processing.Japan:Springer,2016:521-529.
[26] SONG T F,ZHENG W M,SONG P.EEG emotion recognition using dynamical graph convolutional neural networks[J].IEEE Transactions on Affective Computing,2020,11(3):532-541.
[27] VAL-CALVO M,áLVAREZ-SáNCHEZ J R,DíAZ-MORCILLO A,et al.On the use of lateralization for lightweight and accurate methodology for EEG real time emotion estimation using Gaussian-process classifier[C]//International Work-Conference on the Interplay Between Natural and Artificial Computation,2019:191-201.
[28] DIVYA G,GYANENDRA K.Emotion recognition in valence-arousal space from multi-channel EEG data and wavelet based deep learning framework[J].Procedia Computer Science,2020,171:857-867.
[29] 陈田,陈占刚,袁晓辉,等.基于脑电信号瞬时能量的情感识别方法[J].计算机工程,2019,45(4):196-204.
CHEN T,CHEN Z G,YUAN X H,et al.Emotion recognition method based on instantaneous energy of electroencephalography[J].Computer Engineering,2019,45(4):196-204.