MA Li, LIU Xinyu, LI Haoyu, DUAN Keke, NIU Bin. Neural Network Lightweight Method with Dilated Convolution[J]. Computer Engineering and Applications, 2022, 58(5): 85-93.
[1] HOWARD A G,ZHU M,CHEN B,et al.MobileNets:efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017.
[2] SANDLER M,HOWARD A G,ZHU M,et al.MobileNetV2:inverted residuals and linear bottlenecks[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition,Salt Lake City,UT,USA,June 18-22,2018:4510-4520.
[3] IANDOLA F N,MOSKEWICZ M W,ASHRAF K,et al.SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and <1MB model size[J].arXiv:1602.07360,2016.
[4] ZHANG X,ZHOU X,LIN M,et al.ShuffleNet:an extremely efficient convolutional neural network for mobile devices[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition,Salt Lake City,UT,USA,June 18-22,2018:6848-6856.
[5] MA N,ZHANG X,ZHENG H T,et al.ShuffleNet V2:practical guidelines for efficient CNN architecture design[C]//15th European Conference on Computer Vision,Munich,Germany,September 8-14,2018:122-138.
[6] HE Y,ZHANG X,SUN J.Channel pruning for accelerating very deep neural networks[C]//IEEE International Conference on Computer Vision,Venice,Italy,October 22-29,2017:1398-1406.
[7] HAN S,MAO H,DALLY W J.Deep compression:compressing deep neural network with pruning,trained quantization and huffman coding[C]//4th International Conference on Learning Representations,San Juan,Puerto Rico,May 2-4,2016.
[8] YIM J,JOO D,BAE J H,et al.A gift from knowledge distillation:fast optimization,network minimization and transfer learning[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,HI,USA,July 21-26,2017:7130-7138.
[9] YU F,KOLTUN V.Multi-scale context aggregation by dilated convolutions[C]//4th International Conference on Learning Representations,San Juan,Puerto Rico,May 2-4,2016.
[10] CHEN L C,PAPANDREOU G,KOKKINOS I,et al.DeepLab:semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J].IEEE Trans Pattern Anal Mach Intell,2018,40(4):834-848.
[11] MEHTA S,RASTEGARI M,CASPI A,et al.ESPNet:efficient spatial pyramid of dilated convolutions for semantic segmentation[C]//15th European Conference on Computer Vision,Munich,Germany,September 8-14,2018:561-580.
[12] 毕鹏程,罗健欣,陈卫卫.轻量化卷积神经网络技术研究[J].计算机工程与应用,2019,55(16):25-35.
BI Pengcheng,LUO Jianxin,CHEN Weiwei.Research on lightweight convolutional neural network technology[J].Computer Engineering and Applications,2019,55(16):25-35.
[13] 葛道辉,李洪升,张亮,等.轻量级神经网络架构综述[J].软件学报,2020,31:2627-2653.
GE Daohui,LI Hongsheng,ZHANG Liang.et al.Survey of lightweight neural network[J].Journal of Software,2020,31:2627-2653.
[14] SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,NV,USA,June 27-30,2016:2818-2826.
[15] LUO W,LI Y,URTASUN R,et al.Understanding the effective receptive field in deep convolutional neural networks[J].arXiv:1701.04128,2017.
[16] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[C]//3rd International Conference on Learning Representations,San Diego,CA,USA,May 7-9,2015.
[17] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,NV,USA,June 27-30,2016:770-778.
[18] YU F,WANG D,DARRELL T.Deep layer aggregation[J].arXiv:1707.06484,2017.
[19] ZOU Z,SHI Z,GUO Y,et al.Object detection in 20 years:a survey[J].arXiv:1905.05055,2019.
[20] ZHOU X,WANG D,KR?HENBüHL P.Objects as points[J].arXiv:1904.07850,2019.
[21] LAW H,DENG J.CornerNet:detecting objects as paired keypoints[C]//15th European Conference on Computer Vision,Munich,Germany,September 8-14,2018:765-781.