[1] 蒋家俊.基于卷积神经网络的小目标行人检测研究[D].兰州:兰州理工大学,2018.
JIANG J J.Research on small target pedestrian detection based on convolutional neural network[D].Lanzhou:Lanzhou University of Technology,2018.
[2] 盛智勇,揭真,曲洪权,等.基于改进锚候选框的甚高速区域卷积神经网络的端到端地铁行人检测[J].科学技术与工程,2018,18(22):95-101.
SHENG Z Y,JIE Z,QU H Q,et al.End-to-end subway pedestrian detection based on very high-speed area convolutional neural network based on improved anchor candidate frame[J].Science Technology and Engineering,2018,18(22):95-101.
[3] 王飞,王林,张儒良,等.基于融合FPN和Faster R-CNN的行人检测算法[J].数据采集与处理,2019(3):530-537.
WANG F,WANG L,ZHANG R L,et al.Pedestrian detection algorithm based on fusion of FPN and Faster R-CNN[J].Data Collection and Processing,2019(3):530-537.
[4] KIM J H,BATCHULUUN G,PARK K R.Pedestrian detection based on Faster R-CNN in nighttime by fusing deep convolutional features of successive images[J].Expert Systems with Applications,2018,114:15-33.
[5] 尚晓航.复杂场景中的行人检测算法研究[D].南京:南京邮电大学,2018.
SAHNG X H.Research on pedestrian detection algorithms in complex scenes[D].Nanjing:Nanjing University of Posts and Telecommunications,2018.
[6] TYCHSENSMITH L,PETERSSON L.Improving object localization with fitness NMS and bounded IoU loss[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition,2018:6877-6885.
[7] HE Y,ZHU C,WANG J,et al.Bounding box regression with uncertainty for accurate object detection[C]//2019 IEEE Conference on Computer Vision and Pattern Recognition,2019:2888-2897.
[8] ZHANG Y,SHEN Y L,ZHANG J.An improved Tiny-YOLOv3 pedestrian detection algorithm[J].Optik-International Journal for Light and Electron Optics,2019,183:17-23.
[9] 张汇,杜煜,宁淑荣,等.基于Faster RCNN的行人检测方法[J].传感器与微系统,2019,38(2):147-149.
ZHANG H,DU Y,NING S R,et al.Pedestrian detection method based on Faster RCNN[J].Sensors and Microsystems,2019,38(2):147-149.
[10] GIRSHICK R.Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision,2015:1440-1448.
[11] 周滢慜.基于机器视觉的生活垃圾智能分拣系统的设计与实现[D].哈尔滨:哈尔滨工业大学,2018.
ZHOU Y M.Design and implementation of an intelligent sorting system for domestic waste based on machine vision[D].Harbin:Harbin Institute of Technology,2018.
[12] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[13] LIN T,DOLLAR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:936-944.
[14] 宋荣,周大可,杨欣.基于特征融合的尺度感知行人检测[J].电子测量技术,2020,43(5):116-123.
SONG R,ZHOU D K,YANG X.Scale-aware pedestrian detection based on feature fusion[J].Electronic Measurement Technology,2020,43(5):116-123.
[15] 李佐龙,王帮海,卢增.多尺度特征融合重建的行人检测方法[J].计算机工程与应用,2021,57(4):176-182.
LI Z L,WANG B H,LU Z.Pedestrian detection method based on multi-scale feature fusion reconstruction[J].Computer Engineering and Applications,2021,57(4):176-182.
[16] LIU S,QI L,QIN H F,et al.Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018.
[17] GHIASI G,LIN T,LE Q V,et al.NAS-FPN:learning scalable feature pyramid architecture for object detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:7036-7045.
[18] TAKARLI F,AGHAGOLZADEH A,SEYEDARABI H,et al.Combination of high-level features with low-level features for detection of pedestrian[J].Signal,Image and Video Processing,2016,10(1):93-101.
[19] SHELHAMER E,LONG J,DARRELL T.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(4):640-651.
[20] WU Y,CHEN Y,YUAN L P,et al.Rethinking classification and localization for object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:10183-10192.
[21] CAI Z W,VASCONCELOS N.Cascade R-CNN:high quality object detection and instance segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,43(5):1483-1498.
[22] 李伟山,卫晨,王琳.改进的Faster RCNN煤矿井下行人检测算法[J].计算机工程与应用,2019,55(4):200-207.
LI W S,WEI C,WANG L.Improved Faster RCNN coal mine pedestrian detection algorithm[J].Computer Engineering and Applications,2019,55(4):200-207.
[23] 胡超超,刘军,张凯,等.基于深度学习的行人和骑行者目标检测及跟踪算法研究[J].汽车技术,2019(7):19-23.
HU C C,LIU J,ZHANG K,et al.Research on pedestrian and cyclist target detection and tracking algorithm based on deep learning[J].Automotive Technology,2019(7):19-23.
[24] GUO A X,YIN B Q,ZHANG J,et al.Pedestrian detection via multi-scale feature fusion convolutional neural network[C]//2017 Chinese Automation Congress,2017:1364-1368.
[25] ENZWEILER M,GAVRILA D M.Monocular pedestrian detection:survey and experiments[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(12):2179-2195.
[26] ZHOU P,NI B,GENG C,et al.Scale-transferrable object detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018:528-537.
[27] PANG J,CHEN K,SHI J,et al.Libra R-CNN:towards balanced learning for object detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:821-830.
[28] DOLLAR P,WOJEK C,SCHIELE B,et al.Pedestrian detection:a benchmark[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition,2009:304-311.