[1] GUO H P,ZHOU J,WU C A.Imbalanced learning based on data-partition and SMOTE[J].Information,2018,9(9):238.
[2] SUSAN S,KUMAR A.SSOMaj-SMOTE-SSOMin:three-step intelligent pruning of majority and minority samples for learning from imbalanced datasets[J].Applied Soft Computing,2019,78:141-149.
[3] HA J,LEE J S.A new under-sampling method using genetic algorithm for imbalanced data classification[C]//IMCOM’16:Proceedings of the 10th International Conference on Ubiquitous Information Management and Communication.NY,United States:Association for Computing Machinery,2016:1-6.
[4] RAYHAN F,AHMED S,MAHBUB A,et al.CUSBoost:cluster-based under-sampling with boosting for imbalanced classification[C]//2017 2nd International Conference on Computational Systems and Information Technology for Sustainable Solution(CSITSS),Bangalore,India,2017:1-5.
[5] CHAWLA N V,BOWYER K W,HALL L O,et al.SMOTE:synthetic minority over-sampling technique[J].Journal of Artificial Intelligence Research,2011,16(1):321-357.
[6] 古平,杨炀.面向不均衡数据集中少数类细分的过采样算法[J].计算机工程,2017,43(2):241-247.
GU P,YANG Y.Oversampling algorithm oriented to subdivision of minority class in imbalanced data set[J].Computer Engineering,2017,43(2):241-247.
[7] 杨毅,卢诚波,徐根海.面向不平衡数据集的一种精化Borderline-SMOTE方法[J].复旦学报(自然科学版),2017,56(5):537-544.
YANG Y,LU C B,XU G H.A refined Borderline-SMOTE method for imbalanced data set[J].Journal of Fudan University(Natural Science),2017,56(5):537-544.
[8] HE H,BAI Y,GARCIA E A,et al.ADASYN:adaptive synthetic sampling approach for imbalanced learning[C]//2008 IEEE International Joint Conference on Neural Networks(IEEE World Congress on Computational Intelligence),Hong Kong,China,2008:1322-1328.
[9] 赵清华,张艺豪,马建芬,等.改进SMOTE的非平衡数据集分类算法研究[J].计算机工程与应用,2018,54(18):168-173.
ZHAO Q H,ZHANG Y H,MA J F,et al.Research on classification algorithm of imbalanced datasets based on improved SMOTE[J].Computer Engineering and Applications,2018,54(18):168-173.
[10] 易未,毛力,孙俊,等.改进Smote算法在不平衡数据集上的分类研究[J].计算机与现代化,2018(3):83-88.
YI W,MAO L,SUN J.Research on classification of improved Smote algorithm on imbalanced datasets[J].Computer and Modernization,2018(3):83-88.
[11] ZHAO H,LI X J.A cost sensitive decision tree algorithm based on weighted class distribution with batch deleting attribute mechanism[J].Information Sciences,2017,378:303-316.
[12] PEREZ-RODRIGUEZ J,ARROYO-PENA A G,GARCIA-PEDRAJAS N.Simultaneous instance and feature selection and weighting using evolutionary computation:proposal and study[J].Applied Soft Computing,2015,37:416-443.
[13] 王馨月,景丽萍.基于分层抽样的不均衡数据集成分类[J].深圳大学学报(理工版),2019,36(1):24-32.
WANG X Y,JING L P.Stratified sampling based ensemble classification for imbalanced data[J].Journal of Shenzhen University(Science & Engineering),2019,36(1):24-32.
[14] GUO H X,LI Y J,LI Y A,et al.BPSO-Adaboost-KNN ensemble learning algorithm for multi-class imbalanced data classification[J].Engineering Applications of Artificial Intelligence,2016,49:176-193.
[15] LIU Y,WANG Y Z,REN X G,et al.A classification method based on feature selection for imbalanced[J].IEEE Access,2019,7:81794-81807.
[16] KUNCHEVA L I,WHITAKER C J.Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy[J].Machine Learning,2003,51(2):181-207.
[17] 姚旭,王晓丹,张玉玺,等.基于自适应t分布变异的粒子群特征选择方法[J].系统工程与电子技术,2013,35(6):1335-1341.
YAO X,WANG X D,ZHANG Y X,et al.Feature selection particle swarm optimization t distribution mutual information[J].Systems Engineering and Electronics,2013,35(6):1335-1341.
[18] HASSAN M R,RAMAMOHANARAO K,KARMAKAR C K,et al.A novel scalable multi-class ROC for effective visualization and computation[C]//PAKDD’10:Proceedings of the 14th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining.Berlin,Heidelberg:Springer-Verlag,2010:107-120.
[19] 武森,刘露,卢丹.基于聚类欠采样的集成不均衡数据分类算法[J].工程科学学报,2017,39(8):1244-1253.
WU S,LIU L,LU D.Imbalanced data ensemble classification based on cluster-based under-sampling algorithm[J].Journal of University of Science and Technology Beijing,2017,39(8):1244-1253.
[20] LIN W C,TSAI C,HU Y H,et al.Clustering-based undersampling in class-imbalanced data[J].Information Sciences,2017,409/410:17-26.
[21] KRAWCZYK B,WO?NIAK M,SCHAEFER G.Cost-sensitive decision tree ensembles for effective imbalanced classification[J].Applied Soft Computing,2014,14(1):554-562.