SUN Yongming, YANG Jin. Adaptive Interpolation and Feature Compression for Small Sample Data Classification Study[J]. Computer Engineering and Applications, 2022, 58(1): 106-112.
[1] ZHOU P,HU X,LI P,et al.Online feature selection for high-dimensional class-imbalanced data[J].Knowledge-Based Systems,2017,136:187-199.
[2] 张忠林,曹婷婷.基于重采样与特征选择的不均衡数据分类算法[J].小型微型计算机系统,2020,41(6):1327-1333.
ZHANG Z L,CHAO T T.Unbalanced data classification algorithm based on resampling and feature selection[J].Journal of Chinese Computer Systems,2020,41(6):1327-1333.
[3] ANDERSON R,SIOME G.Multiclass from binary:Expanding one-versus-all,one-versus-one and ecoc-based approaches[J].IEEE Transactions on Neural Networks and Learning Systems,2014,25(2):289-302.
[4] FRIEDMAN J H.Greedy function approximation:A gradient boosting machine[J].Annals of Statistics,2000,29(5):1189-1232.
[5] CHEN T Q,GUESTRIN C.XGBoost:A scalable tree boosting system[C]//Proceedings of ACM SigKDD International Conference on Knowledge Discovery Data Mining,2016:785-794.
[6] CHAWLA N V,BOWYER K W,HALL L O,et al.SMOTE:Synthetic minority over-sampling technique[J].Journal of Artificial Intelligence Research,2002,16:321-357.
[7] HAN H,WANG W Y,MAO B H.Borderline-SMOTE:A new over-sampling method in imbalanced data sets learning[J].Advances in Intelligent Computing,2005,36:878-887.
[8] HE H,BAI Y,GARCIA E A,et al.ADASYN:Adaptive synthetic sampling approach for imbalanced learning[C]//2008 IEEE International Joint Conference on Neural Networks(IEEE World Congress on Computational Intelligence),2008.
[9] TOMEK I.Tow modifications of CNN[J].IEEE Transactions on Systems Man and Communications,1996,SMC-6:769-772.
[10] WILSON D L.Asymptotic properties of nearest neighbor rules using edited data[J].IEEE Transactions on Systems Man & Cybernetics,1972,SMC-2(3):408-421.
[11] ZHOU T,LU H L,WHANG W W,et al.GA-SVM based feature selection and parameter optimitzaion in hospitalization expense modeling[J].Applied Soft Computing,2019,75:323-332.
[12] 周志华.机器学习[M].北京:清华大学出版社,2016.
ZHOU Z H.Machine learning[M].Beijing:Tsinghua University Press,2016.
[13] BARBU A,SHE Y,DING L,et al.Feature selection with annealing for computer vision and big data learning[J].IEEE Transactions on Pattern Analysis and Machine Intellligence,2017,39(2):272-286.
[14] EFRON B,HASTIE T,JOHNSTONE I,et al.Least angle regression[J].The Annals of Statistics,2004,32(2):407-499.
[15] 张文杰,蒋烈辉.一种基于遗传算法优化的大数据特征选择方法[J].计算机应用研究,2020,37(1):50-52.
ZHANG W J,JIANG L H.Using genetic algorithm for feature selection optimization on big data processing[J].Application Research of Computers,2020,37(1):50-52.
[16] 初蓓,李占山,张梦林,等.基于森林优化特征选择算法的改进研究[J].软件学报,2018,29(9):2545-2558.
CHU B,LI Z S,ZHANG ML,et al.Research on improvements of feature selection using forest optimization algorithm[J].Journal of Software,2018,29(9):2545-2558.
[17] TABAKHI S,MORADI P,AKHLAGHIAN F.An unsupervised feature selection algorithm based on ant colony optimization[J].Engineering Applications of Artificial Intelligence,2014,32(6):112-123.
[18] 周传华,柳智才,丁敬安,等.基于filter+wrapper模式的特征选择算法[J].计算机应用研究,2019,36(7):1975-1979.
ZHOU C H,LIU Z C,DING J A,et al.Feature selection algorithm based on filter + wrapper pattern[J].Application Research of Computers,2019,36(7):1975-1979.
[19] 李校林,吴腾,郭有庆.融合邻域判别指数的混合式特征选择算法[J].小型微型计算机系统,2019,40(11):2285-2290.
LI X L,WU T,GUO YQ.Hybrid feature selection algorithm based on neighborhood discriminant index[J].ournal of Chinese Computer Systems,2019,40(11):2285-2290.
[20] 张爱武,董喆,康孝岩.基于XGBoost的机载激光雷达与高光谱影像结合的特征选择算法[J].中国激光,2019,46(4):142-150.
ZHANG A W,DONG Z,KANG X Y.Feature selection algorithms of airborne LiDAR combined with hyperspectral images based on XGBoost[J].Chinese Journal of Lasers,2019,46(4):142-150.
[21] WANG R CHEN F L,CHEN Z Y,et al.StudentLife:Assessing mental health,academic performance and behavioral trends of college students using smartphones[C]//Proceedings of the ACM Conference on Ubiquitous Computing,2014:1-14.
[22] 王丰,王亚沙,王江涛,等.基于智能手机感知数据的心理压力评估方法[J].计算机研究与发展,2019,56(3):611-622.
WANG F,WANG Y S,WANG J T,et al.Mental stress assessment approach based on smartphone sensing data[J].Journal of Computer Research and Development,2019,56(3):611-622.
[23] ZHANG Y,SONG X,GONG D.A return-cost-based binary firefly algorithm for feature selection[J].Information Sciences,2017,418:561-574.
[24] MAFARJA M M,MIRJALILI S.Hybrid whale optimization algorithm with simulated annealing for feature selection[J].Neurocomputing,2017,260:302-312.