XI Tingting, ZHAO Xujun, SU Jianhua. Two-Stage Outlier Detection Algorithm Based on Markov Random Walk[J]. Computer Engineering and Applications, 2022, 58(1): 89-98.
[1] CHEN Y,MIAO D,ZHANG H.Neighborhood outlier detection[J].Expert Systems with Applications,2010,37(12):8745-8749.
[2] BREUNIG M M,KRIEGEL H P,NG R T,et al.LOF:Identifying density-based local outliers[J].ACM Sigmod Record,2000,29(2):427-438.
[3] TANG B,HE H.A local density-based approach for outlier detection[J].Neurocomputing,2017,241:171-180.
[4] WANG C,GAO H,ZHEN L,et al.A new outlier detection model using random walk on local information Graph[J].IEEE Access,2018,6:75531-75544.
[5] ZHU Q,FENG J,HUANG J.Natural neighbor:A self-adaptive neighborhood method without parameter K[J].Pattern Recognition Letters,2016,80:30-36.
[6] CAMPOS G O,ZIMEK A,SANDER J,et al.On the evaluation of unsupervised outlier detection:Measures,datasets,and an empirical study[J].Data Mining & Knowledge Discovery,2016,30(4):891-927.
[7] LONG S,ZHU W.Outlier detection for learning-based optimizing compiler[C]//Proceedings of the 5th International Conference on Frontier of Computer Science & Technology,2010:570-575
[8] WANG X,WANG X L,MA Y,et al.A fast MST-inspired kNN-based outlier detection method[J].Information Systems,2014,48:89-112.
[9] 石鸿雁,马晓娟.改进的DBSCAN聚类和LAOF两阶段混合数据离群点检测方法[J].小型微型计算机系统,2018,39(1):74-77
SHI H Y,MA X J.Two-stage outlier detection method based on DBSCAN clustering and LAOF of hybrid data[J].Journal of Chinese Computer Systems,2018,39(1):74-77.
[10] AKOGLU L,TONG H,KOUTRA D.Graph-based anomaly detection and description:A survey[J].Data Mining & Knowledge Discovery,2015,29(3):626-688.
[11] RANSHOUS S,SHEN S,KOUTRA D,et al.Anomaly detection in dynamic networks:A survey[J].Wiley Interdiplinary Reviews Computational Stats,2015,7(3):223-247.
[12] MOONESINGHE H D K,TAN P N.OutRank:A graph-based outlier detection framework using random walk[J].International Journal on Artificial Intelligence Tools,2008,17(1):19-36.
[13] HAUTAMAKI V,KARKKAINEN I,FRANTI P.Outlier detection using k-Nearest Neighbour graph[C]//Proceedings of the 17th International Conference on Pattern Recognition,2004:430-433.
[14] 朱利,邱媛媛,于帅,等.一种基于快速k-近邻的最小生成树离群检测方法[J].计算机学报,2017,40(12):224-238.
ZHU L,QIU Y Y,YU S,et al.A fast kNN-based MST outlier detection method[J].Chinese Journal of Computers,2017,40(12):224-238.
[15] WANG C,LIU Z,GAO H,et al.VOS:A new outlier detection model using virtual graph[J].Knowledge-Based Systems,2019,185:1-12.
[16] MOONESIGNHE H D K,TAN P N.Outlier detection using random walks[C]//Proceedings of the IEEE International Conference on Tools with Artificial Intelligence,2006:532-539.
[17] GCAMPOS G O,ZIMEK A,SANDER J,et al.On the evaluation of unsupervised outlier detection:Measures,datasets,and an empirical study[J].Data Mining & Knowledge Discovery,2016,30(4):891-927.