YANG Shanliang, CHANG Zheng. Chinese Implicit Sentiment Analysis Based on Graph Attention Neural Network[J]. Computer Engineering and Applications, 2021, 57(24): 161-167.
[1] WEI J,LIAO J,YANG Z,et al.BiLSTM with multi-polarity orthogonal attention for implicit sentiment analysis[J].Neurocomputing,2020,383:165-173.
[2] ZUO E,ZHAO H,CHEN B,et al.Context-specific heterogeneous graph convolutional network for implicit sentiment analysis[J].IEEE Access,2020,8:37967-37975.
[3] ZHANG T,HUANG M,ZHAO L.Learning structured representation for text classification via reinforcement learning[C]//Association for the Advancement of Artificial Intelligence,New Orleans,LA,USA,2018:6053-6066.
[4] FANG Z,ZHANG Q,TANG X,et al.An implicit opinion analysis model based on feature?based implicit opinion patterns[J].Artificial Intelligence Review,2020,53(6).
[5] CHOI Y,WIEBE J,MIHALCEA R.Coarse-grained +/-effect word sense disambiguation for implicit sentiment analysis[J].IEEE Transactions on Affective Computing,2017,8(4):471-479.
[6] 赵容梅,熊熙,琚生根,等.基于混合神经网络的中文隐式情感分析[J].四川大学学报(自然科学版),2020,57(2):264-270.
ZHAO R M,XIONG X,JU S G,et al.Implicit sentiment analysis for Chinese texts based on a hybrid neural network[J].Journal of Sichuan University(Natural Science Edition),2020,57(2):264-270.
[7] ZHOU J,CUI H,ZHANG Z,et al.Graph neural networks:a review of methods and applications[J].arXiv:1812.08434,2018.
[8] ZHANG S,TONG H,XU J,et al.Graph convolutional networks:a comprehensive review[J].Computational Social Networks,2019,6(11):1-23.
[9] VELICKOVI P,CUCURULL G,CASANOVA A,et al.Graph attention networks[J].arXiv:1710.10903,2017.
[10] ZHANG Z,SHI X,XIE J,et al.GaAN:gated attention networks for learning on large and spatiotemporal graphs[J].arXiv:1803.07294,2018.
[11] ZHANG C X,SONG D J,HUANG C.Heterogeneous graph neural network[C]//Knowledge Discovery and Data Mining,Anchorage,AK,USA,August 4-8,2019:793-803.
[12] WANG X,JI H,SHI C,et al.Heterogeneous graph attention network[J].arXiv:1903.07293v1,2019.
[13] YAO L,MAO C,LUO Y.Graph convolutional networks for text classification[C]//The Thirty-Third AAAI Conference on Arti?cial Intelligence(AAAI-19),2019:7370-7377.
[14] LIU X,YOU X,ZHANG X,et al.Tensor graph convolutional networks for text classification[J].arXiv:2001.
05313,2020.
[15] CHEN J,HOU H,JI Y,et al.Graph convolutional networks with structural attention model for aspect based sentiment analysis[C]//International Joint Conference on Neural Networks,Budapest,Hungary,14-19 July 2019:1-7.
[16] XIAO L,HU X,CHEN Y,et al.Targeted sentiment classification based on attentional encoding and graph convolutional networks[J].Applied Sciences,2020,10(3):957.
[17] ZHAO P,HOU L,WU Q.Modeling sentiment dependencies with graph convolutional networks for aspect-level sentiment classification[J].arXiv:1906.04501,2019.
[18] BIJARI K,ZARE H,KEBRIAEI E,et al.Leveraging deep graph-based text representation for sentiment polarity applications[J].arXiv:1902.10247,2019.
[19] VASHISHTH S,BHANDARI M,YADAV P,et al.Incorporating syntactic and semantic information in word embeddings using graph convolutional networks[J].arXiv:1809.
04283,2018.
[20] KNYAZEV B,GRAHAM W T,MOHAMED R A.Understanding attention and generalization in graph neural networks[C]//33rd Conference on Neural Information Processing Systems(NeurIPS 2019),Vancouver,Canada,2019.