[1] KARABOGA D.An idea based on honey bee swarm for numerical optimization,TR06[R].Kayseri,Turkey:Erciyes University,2005.
[2] MIRJALILI S,MIRJALILI S M,LEWIS A,et al.Grey wolf optimizer[J].Advances in Engineering Software,2014,69:46-61.
[3] MIRJALILI S,LEWIS A.The whale optimization algorithm[J].Advances in Engineering Software,2016,95(5):51-67.
[4] ARORA S,SINGH S.Butterfly optimization algorithm:a novel approach for global optimization[J].Soft Computing,2019,23(3):715-734.
[5] XUE J,SHEN B.A novel swarm intelligence optimization approach:sparrow search algorithm[J].Systems Science & Control Engineering,2020,8(1):22-34.
[6] 吕鑫,慕晓冬,张钧.基于改进麻雀搜索算法的多阈值图像分割[J].系统工程与电子技术,2021,43(2):318-327.
LYU X,MU X D,ZHANG J.Multi-threshold image segmentation based on improved sparrow search algorithm[J].Systems Engineering and Electronics,2021,43(2):318-327.
[7] 毛清华,张强.融合柯西变异和反向学习的改进麻雀算法[J].计算机科学与探索,2021,15(6):1155-1164.
MAO Q H,ZHANG Q.Improved sparrow algorithm combining Cauchy mutation and opposition-based learning[J].Journal of Frontiers of Computer Science and Technology,2021,15(6):1155-1164.
[8] ARORA S,ANAND P.Chaotic grasshopper optimization algorithm for global optimization[J].Neural Computing and Applications,2018,31:4385-4405.
[9] 杨迪雄,李刚,程耿东.非线性函数的混沌优化方法比较研究[J].计算力学学报,2004,21(3):257-262.
YANG D X,LI G,CHENG G D.Comparative study on chaos optimization algorithm for nonlinear function[J].Chinese Journal of Computational Mechanics,2004,21(3):257-262.
[10] 单梁,强浩,李军,等.基于Tent映射的混沌优化算法[J].控制与决策,2005,20(2):179-182.
SHAN L,QIANG H,LI J,et al.Chaotic optimization algorithm based on Tent map[J].Control and Decision,2005,20(2):179-182.
[11] 张达敏,徐航,王依柔,等.嵌入Circle映射和逐维小孔成像反向学习的鲸鱼优化算法[J].控制与决策,2021,36(5):1173-1180.
ZHANG D M,XU H,WANG Y R,et al.Whale optimization algorithm for embedded circle mapping and one-dimensional oppositional learning based small hole imaging[J].Control and Decision,2021,36(5):1173-1180.
[12] 沈锡,胡江强,尹建川.一种搜索空间自适应变化的自适应粒子群算法[J].大连海事大学学报,2011,37(1):103-106.
SHEN X,HU J Q,YIN J C.A adaptive particle swarm optimization algorithm with adaptive linear decreasing search space[J].Journal of Dalian Maritime University,2011,37(1):103-106.
[13] 陈连兴,牟永敏.一种改进的樽海鞘群算法[J].计算机应用研究,2021,38(6):1648-1652.
CHEN L X,MU Y M.Improved salp swarm algorithm[J].Application Research of Computers,2021,38(6):1648-1652.
[14] 宁杰琼,何庆.混合策略改进的蝴蝶优化算法[J].计算机应用研究,2021,38(6):1718-1723.
NING J Q,HE Q.Mixed strategy to improve butterfly optimization algorithm[J].Application Research of Computers,2021,38(6):1718-1723.
[15] 周方俊,王向军.基于t分布变异的进化规划[J].电子学报,2008,36(4):667-671.
ZHOU F J,WANG X J.Evolutionary programming using mutations based on the t probability distribution[J].Acta Electronica Sinica,2008,36(4):667-671.
[16] KENNEDY J,EBERHART R.Particle swarm optimization[C]//Proceedings of the IEEE International Conference on Neural Networks,1995:1942-1948.
[17] 高文欣,刘升,肖子雅,等.柯西变异和自适应权重优化的蝴蝶算法[J].计算机工程与应用,2020,56(15):43-50.
GAO W X,LIU S,XIAO Z Y.Butterfly optimization algorithm based on Cauchy variation and adaptive weight[J].Computer Engineering and Applications,2020,56(15):43-50.
[18] 肖子雅,刘升.精英反向黄金正弦鲸鱼算法及其工程优化研究[J].电子学报,2019,47(10):2177-2186.
XIAO Z Y,LIU S.Study on elite opposition-based golden-sine whale optimization algorithm and its application of project optimization[J].Acta Electronica Sinica,2019,47(10):2177-2186.