Research on Tunnel Crack Segmentation Algorithm Based on Improved U-Net Network
CHANG Hui, RAO Zhiqiang, ZHAO Yulin, LI Yichen
1.Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing 100101, China
2.Urban Rail Transit and Logistics College, Beijing Union University, Beijing 100101, China
CHANG Hui, RAO Zhiqiang, ZHAO Yulin, LI Yichen. Research on Tunnel Crack Segmentation Algorithm Based on Improved U-Net Network[J]. Computer Engineering and Applications, 2021, 57(22): 215-222.
[1] SALMAN M,MATHAVAN S,KAMAL K,et al.Pavement crack detection using the Gabor filter[C]//16th International IEEE Conference on Intelligent Transportation Systems,2013:2039-2044.
[2] SHI Y,CUI L,QI Z,et al.Automatic road crack detection using random structured forests[J].IEEE Transactions on Intelligent Transportation Systems,2016,17(12):3434-3445.
[3] NAGARAJAIAH S,YANG Y.Modeling and harnessing sparse and low rank data structure:a new paradigm for structural dynamics,identification,damage detection,and health monitoring[J].Structural Control & Health Monitoring,2017,24(1):256-278.
[4] DAI B,GU C,ZHAO E,et al.Improved online sequential extreme learning machine for identifying crack behavior in concrete dam[J].Advances in Structural Engineering,2019,22(2):402-412.
[5] LI G,ZHAO X,DU K,et al.Recognition and evaluation of bridge cracks with modified active contour model and greedy search-based support vector machine[J].Automation in Construction,2017,78:51-61.
[6] 柴雪松,朱兴永,李健超,等.基于深度卷积神经网络的隧道衬砌裂缝识别算法[J].铁道建筑,2018(6):65-70.
CHAI X S,ZHU X Y,LI J C,et al.Tunnel lining crack identification algorithm based on deep convolutional neural network[J].Railway Construction,2018(6):65-70.
[7] 刘新根,陈莹莹,朱爱玺,等.基于深度学习的隧道裂缝识别方法[J].广西大学学报(自然科学版),2018(6):2243-2251.
LIU X G,CHEN Y Y,ZHU A X,et al.Tunnel crack identification based on deep learning[J].Journal of Guangxi University(Natural Science Edition),2018(6):2243-2251.
[8] CHENG J,XIONG W,CHEN W,et al.Pixel-level crack detection using U-Net[C]//2018 IEEE Region 10 Conference,2018(8):462-466.
[9] 朱苏雅,杜建超,李云松,等.采用U-Net卷积网络的桥梁裂缝检测方法[J].西安电子科技大学学报,2019,46(6):1-8.
ZHU S Y,DU J C,LI Y S,et al.Method for bridge crack detection based on the U-Net convolutional networks[J].Journal of Xidian University,2019,46(6):1-8.
[10] LAU S L,WANG X,YANG X,et al.Automated pavement crack segmentation using fully convolutional U-Net with a pretrained ResNet-34 encoder[J].arXiv:2001.01912,2020.
[11] 徐国整,廖晨聪,陈锦剑,等.基于HU-ResNet的混凝土表观裂缝信息提取[J].计算机工程,2020,46(11):279-285.
XU G Z,LIAO C C,CHEN J J,et al.Extraction of concrete apparent crack imformation based on HU-ResNet[J].Computer Engineering,2020,46(11):279-285.
[12] LIU Z,CAO Y,WANG Y,et al.Computer vision-based concrete crack detection using U-Net fully convolutional networks[J].Automation in Construction,2019,104:129-139.
[13] 翁飘.复杂背景下路面裂缝分割算法研究[D].郑州:郑州大学,2019.
WENG P.Research on pavement crack segmentation algorithm in complex environment[D].Zhengzhou:Zhengzhou University,2019.
[14] ISLAM M M,KIM J M.Vision-based autonomous crack detection of concrete structures using a fully convolutional encoder-decoder network[J].Sensors,2019,19(1):4251.
[15] SCHMUGGE S J,RICE L,LINDBERG J,et al.Crack segmentation by leveraging multiple frames of varying illumination[C]//2017 IEEE Winter Conference on Applications of Computer Vision,2017:1045-1053.
[16] REN Y,HUANG J,HONG Z,et al.Image-based concrete crack detection in tunnels using deep fully convolutional networks[J].Construction and Building Materials,2020,234:117-127.
[17] HU J,SHEN L,ALBANIE S,et al.Squeeze-and-excitation networks[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition,2018:7132-7141.
[18] 顾书豪,李小霞,王学渊,等.增强语义信息与多通道特征融合的裂缝检测[J].计算机工程与应用,2021,57(10):204-210.
GU S H,LI X X,WANG X Y,et al.Pavement crack detection based on enhanced semantic information and multi-channel feature fusion[J].Computer Engineering and Applications,2021,57(10):204-210.