Malware Family Classification Based on Deep Learning Visualization
CHEN Xiaohan, WEI Shuning, QIN Zhengze
1.College of Information Science and Engineering, Hunan Normal University, Changsha 410006, China
2.National Key Laboratory for Parallel and Distributed Processing, National University of Defense Technology, Changsha 410006, China
CHEN Xiaohan, WEI Shuning, QIN Zhengze. Malware Family Classification Based on Deep Learning Visualization[J]. Computer Engineering and Applications, 2021, 57(22): 131-138.
[1] Rad Hat.什么是恶意软件?[EB/OL].(2019-01-12)[2020-04-24].https://www.redhat.com/zh/topics/security/what-is-malware.
Rad Hat.What is malware?[EB/OL].(2019-01-12)[2020-04-24].https://www.redhat.com/zh/topics/security/what-is-malware.
[2] 国家互联网应急中心.网络安全信息与动态周报[EB/OL].(2020-04-23)[2020-04-24].https://www.cert.org.cn/publish/main/44/2020/20200423151618969661418/20200423151618
969661418_.html.
National Computer Network Emergency Response Technical Team/Coordination Center of China.Weekly report on network security information and trends[EB/OL].(2020-04-23)[2020-04-24].https://www.cert.org.cn/publish/main/44/2020/20200423151618969661418/20200423151618969661418_.html.
[3] 金炳初,文辉,石志强,等.基于行为路径树的恶意软件分类方法[J].计算机工程与应用,2020,56(11):98-104.
JIN B C,WEN H,SHI Z Q,et al.Malware classification method based on path tree of behavior[J].Computer Engineering and Applications,2020,56(11):98-104.
[4] 陈志锋,李清宝,张平,等.基于数据特征的内核恶意软件检测[J].软件学报,2016,27(12):3172-3191.
CHEN Z F,LI Q B,ZHANG P,et al.Data characteristics-based kernel malware detection[J].Journal of Software,2016,27(12):3172-3191.
[5] 郭敏,曾颖明,姚金利,等.基于大数据样本的软件行为安全分析[J].信息网络安全,2017,17(9):153-156.
GUO M,ZENG Y M,YAO J L,et al.The analysis of software behavior security based on big data samples[J].Netinfo Security,2017,17(9):153-156.
[6] 陈琪,蒋国平,夏玲玲.基于静态结构的恶意代码同源性分析[J].计算机工程与应用,2017,53(14):93-98.
CHEN Q,JIANG G P,XIA L L.Homology analysis of malware based on function structure[J].Computer Engineering and Applications,2017,53(14):93-98.
[7] NATARAJ L,KARTHIKEYAN S,JACOB G,et al.Malware images:visualization and automatic classification[C]//8th International Symposium on Visualization for Cyber Security,Pittsburg,July 20,2011.New York:ACM,2011:21-29.
[8] 冯胥睿瑞,刘嘉勇,程芃森.基于特征提取的恶意软件行为及能力分析方法研究[J].信息网络安全,2019,19(12):72-78.
FENG X R R,LIU J Y,CHENG P G.Analyzing malware behavior and capability related text based on feature extraction[J].Netinfo Security,2019,19(12):72-78.
[9] TOBIYAMA S,YAMAGUCHI Y,SHIMADA H,et al.Malware detection with deep neural network using process behavior[C]//IEEE 40th Annual Computer Software and Applications Conference,Atlanta,Jun 10-14,2016.Piscataway:IEEE,2016:577-582.
[10] SUN G S,QUAN Q.Deep learning and visualization for identifying malware families[J].IEEE Transactions on Dependable and Secure Computing,2021,18(1):283-295.
[11] HAN K S,LIM J H,KANG B,et al.Malware analysis using visualized images and entropy graphs[J].International Journal of Information Security,2015,14(1):1-14.
[12] 刘亚姝,王志海,侯跃然,等.信息密度增强的恶意代码可视化与自动分类方法[J].清华大学学报(自然科学版),2019,59(1):9-14.
LIU Y S,WANG Z H,HOU Y R,et al.Malware visualization and automatic classification with enhanced information density[J].Chinese Journal of Tsinghua University(Science and Technology),2019,59(1):9-14.
[13] KOLOSNJAJI B,ZARRAS A,WEBSTER G,et al.Deep learning for classification of malware system call sequences[C]//LNCS 9992:Australasian Joint Conference on Artificial Intelligence,Nov 29,2016.Cham:Springer,2016:137-149.
[14] 赵炳麟,孟曦,韩金,等.基于图结构的恶意代码同源性分析[J].通信学报,2017,38(S2):86-93.
ZHAO B L,MENG X,HAN J,et al.Homology analysis of malware based on graph[J].Journal on Communications,2017,38(S2):86-93.
[15] ZHAO Y Z,XU C Y,BO B,et al.MalDeep:a deep learning classification framework against malware variants based on texture visualization[J].Security and Communication Networks,2019(8):1-11.
[16] 张弛弘,辛阳.基于灰度图的恶意软件检测方法研究[EB/OL].(2019-12-30)[2020-04-24].http://www.paper.edu.cn/releasepaper/content/201912-125.
ZHANG C H,XIN Y.Research on malware classification based on gray-scale image[EB/OL].(2019-12-30)[2020-04-24].http://www.paper.edu.cn/releasepaper/content/201912-125.
[17] PASCANU R,STOKES J W,SANOSSIAN H,et al.Malware classification with recurrent networks[C]//2015 IEEE International Conference on Acoustics,Brisbane,Apr 19-24,2015.Piscataway:IEEE,2015:1916-1920.
[18] EUI C R S,DAWN S,REZA M.Recognizing functions in binaries with neural networks[C]//24th USENIX Conference on Security Symposium,Washington,Aug 12-14,2015.Berkeley:USENIX,2015:611-626.
[19] TOBIYAMA S,YAMAGUCHI Y,SHIMADA H,et al.Malware detection with deep neural network using process behavior[C]//2016 IEEE 40th Annual Computer Software and Applications Conference,Atlanta,Jun 10-14,2016.Piscataway:IEEE,2016:577-582.
[20] UDDIN M S,ROY C K,SCHNEIDER K A,et al.On the effectiveness of simHash for detecting near-miss clones in large scale software systems[C]//18th Working Conference on Reverse Engineering,Limerick,Oct 17-20,2011.Piscataway:IEEE,2011:13-22.
[21] 乔延臣.恶意代码同源判断技术研究[D].北京:中国科学院大学,2016.
QIAO Y C.Research on homology judgment technology of malicious code[D].Beijing:University of Chinese Academy of Sciences,2016.
[22] KAGGLE.Microsoft malware classification challenge(big2015)
[DB/OL].(2015)[2020-04-24].https://www.kaggle.com/c/malware-classification/datxiu.