HUANG Wenbin, CHEN Renwen, YUAN Tingting. Compression of UAV Object Detection Model Based on Improved YOLOv3-SPP[J]. Computer Engineering and Applications, 2021, 57(21): 165-173.
[1] LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
[2] GIRSHICK R.Fast R-CNN[C]//IEEE International Conference on Computer Vision and Pattern Recognition,2015:1440-1448.
[3] REN S,HE K,GIRSHICK R B,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[4] DAI J,LI Y,HE K,et al.R-FCN:object detection via region-based fully convolutional networks[C]//Advances in Neural Information Processing Systems,2016:379-387.
[5] HE K,GKIOXARI G,DOLLAR P,et al.Mask R-CNN[C]//IEEE Conference on Computer Vision and Pattern Recognition,2018:6517-6525.
[6] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition,2016:6517-6525.
[7] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//Proceedings of European Conference on Commuter Vision,2016:21-37.
[8] REDMON J,FARHADI A.YOL09000:better,faster,stronger[C]//IEEE Conference on Computer Vision and Pattern Recognition,2017:6517-6525.
[9] REDMON J,FARHADI A.YOLOv3:an incremental improvement[J].arXiv:1804.02767,2018.
[10] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020.
[11] JOCHER G,STOKEN A,BOROVEC J,et al.Ultralytics/yolov5:v3.0(Version v3.0)[EB/OL](2020-08-13).http://doi.org/10.5281/zenodo.3983579.
[12] 李云鹏,侯凌燕,王超.基于YOLOv2的复杂场景下车辆目标检测[J].电视技术,2018,42(5):100-106.
LI Y P,HOU L Y WANG C.Vehicle object detection in complex scene based on yolov2[J].Video Engineering,2018,42(5):100-106.
[13] HE Y H,ZHANG X Y,SUN J.Channel pruning for accelerating very deep neural networks[J].arXiv:1707. 06168,2017.
[14] HAN S,MAO H,DALLY W J.Deep compression:compressing deep neural networks with pruning,trained quantization and huffmancoding[EB/OL].[2015-10-15].https://arxiv.org/abs/1510.00149.
[15] 李江昀,赵义凯,薛卓尔,等.深度神经网络模型压缩综述[J].工程科学学报,2019,41(10):1229-1239.
LI J Y,ZHAO Y K,XUE Z E.A survey of model compression for deep neural networks[J].Chinese Journal of Engineering,2019,41(10):1229-1239.
[16] LI H,KADAV A,DURDANOVIC I,et al.Pruning filters for efficient convnets[J].arXiv:1608.08710,2016.
[17] LIU Z,LI J,SHEN Z,et al.Learning efficient convolutional networks through network slimming[C]//2017 IEEE International Conference on Computer Vision(ICCV),2017.
[18] ZHANG P,ZHONG Y,LI X.SlimYOLOv3:narrower,faster and better for real-time UAV applications[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops,2019.
[19] HE K,ZHANG X,REN S,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2014,37(9):1904-1916.
[20] REZATOFIGHI H,TSOI N,GWAK J Y,et al.Generalized intersection over union:a metric and a loss for bounding box regression[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2020.
[21] ZHONG Z,ZHENG L,KANG G,et al.Random erasing data augmentation[J].arXiv:1708.04896,2017.
[22] DEVRIES T,TAYLOR G W.Improved regularization of convolutional neural networks with cutout[J].arXiv:1708.04552,2017.
[23] EFRAIMIDIS P S,SPIRAKIS P G.Weighted random sampling with a reservoir[J].Information Processing Letters,2006,97(5):181-185.
[24] LING C X,LI C H.Data mining for direct marketing:problems and solutions[C]//Proceedings of the Fourth International Conference on Knowledge Discovery and Data Ming,1998:73-79.
[25] GUO H X,LI Y J,JENNIFER S,et al.Learning from class-imbalanced data:review of methods and applications[J].Expert Systems with Applications,2017,73:220-239.
[26] TAKAHASHI R,MATSUBARA T,UEHARA K.Data augmentation using random image cropping and patching for deep CNNs[J].arXiv:1811.09030,2018.
[27] LIU Z,LI J,SHEN Z,et al.Learning efficient convolutional networks through network slimming[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2736-2744.