Attention Preference Recommendation Methods with Fusing Network Embedding in Heterogeneous Information
ZHANG Jie, ZHANG Yueqin, ZHANG Zehua, LIU Zhixin, LEI Xiang
1.College of Information and Computer, Taiyuan University of Technology, Jinzhong, Taiyuan 030600, China
2.Taiyuan Qingzhongxin Technology Co., Ltd., Taiyuan 020300, China
[1] ZHANG S,YAO L N,SUN A X,et al.Deep learning based recommender system:a survey and new perspectives[J].ACM Computing Surveys(CSUR),2019,52(1):1-38.
[2] LU J,WU D S,MAO M S,et al.Recommender system application developments:a survey[J].Decision Support Systems,2015,74:12-32.
[3] 王卫红,曾英杰.基于聚类和用户偏好的协同过滤推荐算法[J].计算机工程与应用,2020,56(3):68-73.
WANG W H,ZENG Y J.Collaborative filtering recommendation algorithm based on clustering and user preference[J].Computer Engineering and Applications,2020,56(3):68-73.
[4] ZHENG L,LU C T,JIANG F,et al.Spectral collaborative filtering[C]//Proceedings of the 12th ACM Conference on Recommender Systems,2018:311-319.
[5] WANG C,LIU Q,WU R Z,et al.Confidence-aware matrix factorization for recommender systems[C]//The Thirty-Second AAAI Conference on Artificial Intelligence,2018:434-442.
[6] ABDI M H,OKEYO G,MWANGI R W.Matrix factorization techniques for context-aware collaborative filtering recommender systems:a survey[J].Computer and Information Science,2018,11(2).
[7] GAO L,YANG H,WU J,et al.Recommendation with multi-source heterogeneous information[C]//Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence,2018:3378-3384.
[8] 吴宾,娄铮铮,叶阳东.一种面向多源异构数据的协同过滤推荐算法[J].计算机研究与发展,2019,56(5):1034-1047.
WU B,LOU Z Z,YE Y D.A collaborative filtering recommendation algorithm for multi-source heterogeneous data[J].Journal of Computer Research and Development,2019,56(5):1034-1047.
[9] HU L,WANG Y,XIE Z Z,et al.Semantic preference-based personalized recommendation on heterogeneous information network[J].IEEE Access,2017,5:19773-19781.
[10] GAO Y,RAN L X.Collaborative filtering recommendation algorithm for heterogeneous data mining in the internet of things[J].IEEE Access,2019,7:123583-123591.
[11] ZHAO J,ZHOU Z,GUAN Z Y,et al.IntentGC:ascalable graph convolution framework fusing heterogeneous information for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,2019:2347-2357.
[12] SUN Y Z,HAN J W,YAN X F,et al.Pathsim:meta path-based top-k similarity search in heterogeneous information networks[J].Proceedings of the VLDB Endowment,2011,4(11):992-1003.
[13] SHI C,HU B B,ZHAO W X,et al.Heterogeneous information network embedding for recommendation[J].IEEE Transactions on Knowledge and Data Engineering,2018,31(2):357-370.
[14] YIN J Y,GUO Y C,CHEN Y S.Heterogenous information network embedding based cross-domain recommendation system[C]//2019 International Conference on Data Mining Workshops(ICDMW),2019:362-369.
[15] CHEN L,LIU Y,ZHENG Z B,et al.Heterogeneous neural attentive factorization machine for rating prediction[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management,2018:833-842.
[16] HU B B,SHI C,ZHAO W X,et al.Leveraging meta-path based context for top-n recommendation with a neural co-attention model[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,2018:1531-1540.
[17] SUN Y Z,HAN J W.Mining heterogeneous information networks:principles and methodologies[J].Synthesis Lectures on Data Mining and Knowledge Discovery,2012,3(2):1-159.
[18] ZHANG D K,YIN J,ZHU X Q,et al.Network representation learning:a survey[J].IEEE Transactions on Big Data,2018,6(1):3-28.
[19] CUI P,WANG X,PEI J,et al.A survey on network embedding[J].IEEE Transactions on Knowledge and Data Engineering,2018,31(5):833-852.
[20] SUN Y Z,NORICK B,HAN J W,et al.Pathselclus:integrating meta-path selection with user-guided object clustering in heterogeneous information networks[J].ACM Transactions on Knowledge Discovery from Data,2013,7(3):1-23.
[21] GROVEK A,LESKOVE J.node2vec:scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2016:855-864.
[22] WANG X,JI H,SHI C,et al.Heterogeneous graph attention network[C]//The World Wide Web Conference,2019:2022-2032.
[23] MNIH A,SALAKHUTDINOV R R.Probabilistic matrix factorization[C]//Advances in Neural Information Processing Systems,2008:1257-1264.
[24] MA H,ZHOU D Y,LIU C,et al.Recommender systems with social regularization[C]//Proceedings of the Fourth ACM International Conference on Web Search and Data Mining,2011:287-296.
[25] ZHAO Z Y,ZHANG X J,ZHOU H,et al.HetNERec:heterogeneous network embedding based recommendation[J].Knowledge-Based Systems,2020,204(8):106218.