Computer Engineering and Applications ›› 2018, Vol. 54 ›› Issue (5): 105-110.DOI: 10.3778/j.issn.1002-8331.1609-0234

Previous Articles     Next Articles

Method for constructing (3, L)-QC-LDPC codes based on Chinese Remainder Theorem

PENG Haiying, YANG Jian, SUN Lijun   

  1. Key Laboratory of Optical Communication and Networks, School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • Online:2018-03-01 Published:2018-03-13

基于CRT的(3,L)-QC-LDPC码构造

彭海英,杨  箭,孙力军   

  1. 重庆邮电大学 通信与信息工程学院 重庆高校市级光通信与网络重点实验室,重庆 400065

Abstract: For any row weight L, a new family of (3, L)-regular Low-Density Parity-Check(LDPC) codes is proposed explicitly with girth eight as the first component code. Another Low-Density Parity-Check(LDPC) codes with the capacity of fast encoding is proposed as the second component code. Employing these new codes  in the construction method of Chinese Remainder Theorem(CRT), a novel class of compound QC-LDPC codes is presented with both girth at least eight and very flexible code lengths. The proposed codes have the above two characteristics. Simulation results show that compared with QC-LDPC code constructed by IRCMS algorithm, the proposed codes have comparable or even better performance, while the encoding complexity is lower; moreover, the proposed codes outperform the array code with dual-diagonal parity structure about 0.3 dB gain at BER of 10-4 with the capacity of fast encoding. Compared with PEG-CRT-LDPC codes, the proposed codes have better performance while the encoding complexity is lower.

Key words: Low-Density Parity-Check(LDPC) code, Chinese remainder theorem, component code, fast encoding

摘要: 对于任意行重L,利用完全确定的方式构造出一类围长为8的(3,L)-LDPC码作为分量码1,构造可快速编码的LDPC码作为分量码2,利用分量码1和分量码2,并结合中国剩余定理(CRT)构造出一类围长至少为8的合成QC-LDPC码。该方法构造出来的码字同时具备以上两种特性。仿真结果表明,所构造的码字性能与基于IRCMS算法构造的QC-LDPC码相比,有略微提升,且具有快速编码特性,编码复杂度更低;与具有双对角结构的阵列码相比,性能有了明显提升。在误码率达到10-4时,码字性能大约提高了0.3 dB;与PEG-CRT-LDPC码相比,所构造的码字在低编码复杂度的基础上性能有所提升。

关键词: 低密度奇偶校验(LDPC)码, 中国剩余定理, 分量码, 快速编码