Computer Engineering and Applications ›› 2017, Vol. 53 ›› Issue (10): 90-95.DOI: 10.3778/j.issn.1002-8331.1603-0180

Previous Articles     Next Articles

Research of load-balancing model based on SSAWF mechanism

LIU Di1,2, ZHU Ligu1,2, ZHANG Lei1,2, FENG Dongyu1,2   

  1. 1.Communication University of China, Beijing 100024, China
    2.Beijing Key Laboratory of Big Data in Security & Protection Industry, Beijing 100024, China
  • Online:2017-05-15 Published:2017-05-31


刘  迪1,2,朱立谷1,2,张  雷1,2,冯东煜1,2   

  1. 1.中国传媒大学,北京 100024
    2.安防大数据处理与应用北京市重点实验室,北京 100024

Abstract: With the rapid development of big data and big data strategy is put forward, the Web server cluster system will face more severe challenges in terms of load. The traditional load balancing algorithm has obvious limitations. This paper proposes a dynamic load-balancing model based on the SSAWF mechanism. The model uses strong suspend mechanism and cubic exponential smoothing method prediction based on AHP algorithm for dynamic load balancing scheduling. Results of the experiments show that the model is better than the traditional load balancing under abnormal system transient performance, high concurrency and high system load interaction.

Key words: Web server cluster, load-balancing, Strong Suspend And Weak Forecast(SSAWF), Analytic Hierarchy Process(AHP), cubic exponential smoothing method

摘要: 大数据时代的快速发展和大数据战略的明确提出,使得Web服务器集群将面临更加复杂和严峻的负载挑战。传统的负载均衡算法存在着明显的局限性。提出了一种基于强挂起弱预测机制的负载均衡模型,该模型利用强挂起机制和基于层次分析的三次指数平滑预测算法进行负载均衡动态调度。实验结果表明该模型在系统瞬时性能异常、高并发和重负载交互情况下的负载均衡效果优于传统负载均衡算法。

关键词: Web服务器集群, 负载均衡, 强挂起弱预测, 层次分析法, 三次指数平滑法