Computer Engineering and Applications ›› 2017, Vol. 53 ›› Issue (1): 69-72.DOI: 10.3778/j.issn.1002-8331.1503-0265
Previous Articles Next Articles
ZHANG Chaoquan, LI Xiuqing
Online:
Published:
张超权,李修清
Abstract: This paper points out that the [p]-randomized divergence degree and the values of randomized three-point distribution are closely related in randomized logic metric space of 3-valued propositional logical system. It is proved that the [p]-randomized divergence degree of the set of atomic formulas with different values of three-point distribution sequence can be full of the real number interval [(0,1]].
Key words: randomized truth degree, randomized logic metric space, randomized divergence degree
摘要: 在三值命题逻辑系统的随机逻辑度量空间[(F(S),ρp)]中,指出理论的[p]-随机发散度是和随机三值分布序列[p=(p1,p2,…)]的具体取值密切相关的,证明了全体原子公式之集[S]的[p]-随机发散度随着三值分布序列[p]的不同取值可以充满整个[(0,1]]实数区间。
关键词: 随机真度, 随机逻辑度量空间, 随机发散度
ZHANG Chaoquan, LI Xiuqing. Distribution of randomized divergence degree of theory in 3-valued propositional logical system[J]. Computer Engineering and Applications, 2017, 53(1): 69-72.
张超权,李修清. 三值命题逻辑系统中理论的随机发散度的分布[J]. 计算机工程与应用, 2017, 53(1): 69-72.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.1503-0265
http://cea.ceaj.org/EN/Y2017/V53/I1/69