Computer Engineering and Applications ›› 2016, Vol. 52 ›› Issue (17): 261-265.

Previous Articles     Next Articles

Research on online detection and self-adaption recognition of wafer defect patterns

WU Bin1, LU Xiaolei2, YU Jianbo2   

  1. 1.School of Business, Shanghai Dianji University, Shanghai 201306, China
    2.School of Mechanical Engineering, Tongji University, Shanghai 201804, China
  • Online:2016-09-01 Published:2016-09-14

晶圆表面缺陷模式的在线探测与自适应识别研究

吴  斌1,卢笑蕾2,余建波2   

  1. 1.上海电机学院 商学院,上海 201306
    2.同济大学 机械与能源工程学院,上海 201804

Abstract: Wafer defect patterns usually indicate the abnormal sources existing in the manufacturing process. Therefore wafer defect recognition plays a crucial important role in finding the root causes of the out-of-control process. This paper develops a model for wafer defect detection and self-adaption recognition. First of all, feature extraction is applied to different wafer patterns. Then based on modeling the various defect patterns with corresponding Hidden Markov Model(HMM), a dynamic ensemble scheme HMMs is proposed to detect and recognize defect patterns occurring in wafers. The proposed model is successfully applied to WM-811K wafer bin map database and the experimental results prove the effectiveness of the model.

Key words: semiconductor manufacturing, wafer defect, pattern recognition, hidden Markov model

摘要: 晶圆表面的缺陷通常反映了半导体制造过程存在的异常问题,通过探测与识别晶圆表面缺陷模式,可及时诊断故障源并进行在线调整。提出了一种晶圆表面缺陷模式的在线探测与自适应识别模型。首先该模型对晶圆表面的缺陷模式进行特征提取,基于特征集对每种晶圆模式构建相应的隐马尔科夫模型(Hidden Markov Model,HMM),并提出基于HMM动态集成的晶圆缺陷在线探测与识别方法。提出的模型成功应用于WM-811K数据库的晶圆缺陷检测与识别中,实验结果充分证明了该模型的有效性与实用性。

关键词: 半导体制造, 晶圆缺陷, 模式识别, 隐马尔科夫模型