Computer Engineering and Applications ›› 2015, Vol. 51 ›› Issue (10): 191-194.

Previous Articles     Next Articles

Face recognition based on 2-dimensional MB-LBP characteristics

WANG Hong, WU Jigang, ZHANG Zheng   

  1. School of Computer Science and Software, Tianjin Polytechnic University, Tianjin 300387, China
  • Online:2015-05-15 Published:2015-05-15

基于二维MB-LBP特征的人脸识别

王  红,武继刚,张  铮   

  1. 天津工业大学 计算机科学与软件学院,天津 300387

Abstract: This paper proposes a novel face recognition method based on two-dimensional multi-block local binary pattern. A face image is divided into some blocks. The MB-LBP operator is applied on each block. It combines the MB-LBP and gray level co-occurrence matrix to get two-dimensional MB-LBP features which better describe the local texture spatial structure. Each sub-block of LBP gray histogram is connected to form the face feature. The proposed approach is tested on ORL and CMU-PIE face database with the Support Vector Machine(SVM) as classifier. The results of experiments demonstrate that the proposed algorithm is more steady and superior of identifying faces while compared with the traditional one-dimensional LBP features.

Key words: face recognition, Gray Level Co-occurrence Matrix(GLCM), Local Binary Patterns(LBP), Support Vector Machine(SVM)

摘要: 提出了一种基于二维多尺度局部二进制模式的人脸识别方法,对一幅人脸图像进行分块,对每一块的图像进行MB-LBP(Multi-scale Block Local Binary Patterns)算子运算,将MB-LBP与灰度共现矩阵结合起来得到了可以更好地描述局部纹理空间结构的二维MB-LBP特征,将各子块的二维MB-LBP特征进行连接形成人脸特征。该算法在ORL和CMU-PIE人脸数据库上进行测试,选择了支持向量机(SVM)作为分类器,并与传统的基于一维LBP特征进行比较,结果表明提出的算法在人脸识别问题上的有效性和优越性。

关键词: 人脸识别, 灰度共现矩阵, 局部二进制模式, 支持向量机