Computer Engineering and Applications ›› 2015, Vol. 51 ›› Issue (1): 177-183.

Previous Articles     Next Articles

Fast and robust fuzzy C-means clustering algorithm based on space distance of nearest neighbors

WANG Junling1、2, WANG Shitong1, BAO Fang2, ZHOU Jianlin3   

  1. 1.College of Digital Media, Jiangnan University, Wuxi, Jiangsu 214122, China
    2.Information Fusion Software Engineering Research and Development Center of Jiangsu Province, Jiangyin, Jiangsu 214405, China
    3.Department of Computer Science, Jiangyin Polytechnic College, Jiangyin, Jiangsu 214405, China
  • Online:2015-01-01 Published:2015-01-06

基于空间距离的快速模糊C均值聚类算法

王军玲1、2,王士同1,包  芳2,周建林3   

  1. 1.江南大学 数字媒体学院,江苏 无锡 214122
    2.江苏省信息融合软件工程技术研发中心,江苏 江阴 214405
    3.江苏省江阴职业技术学院 计算机科学系,江苏 江阴 214405

Abstract: To deal with the traditional image segmentation algorithms’ sensitive to noises and outliers, and the segmenting time increasing with the image size, the fast and Fuzzy C-Means clustering algorithm based on the space distance of nearest neighbors(SFGFCM) uses a nuclear space distance formula to calculate the similarity measure [Sij]between the query pixel and its nearest neighbors, further more to calculate the local information constrains image with the adjacent pixels weighted sum, at last sum the local information image’s grey level to cluster. So that it well balances the query pixel’s gray levels and local information, provides robustness to noisy images and guaranteed image details presentation, improves the accuracy of clustering, at the same time reduces the clustering time remarkably for the large size images. Experiments performed on a large number of synthetic and real-world images show that SFGFCM is more effective and efficient in contrast to traditional algorithm on image segmentation.

Key words: Fuzzy C-Means clustering, space distance, robustness

摘要: 针对传统的模糊C均值聚类算法在进行图像分割时对孤立点、噪声点敏感性较强,聚类耗时随图像变大而快速增长等缺陷,基于临近元素空间距离的模糊C均值聚类算法即SFGFCM算法,采用核化的空间距离公式,计算出空间临近像素与考察像素的相似度[Sij],然后用邻近像素灰度加权和计算出邻近信息制约图像,并进一步在邻近信息制约图像的灰度级统计的基础上进行聚类。该算法考察了临近像素灰度和位置等信息,并且它们之间取得了很好的平衡;不仅表现出较强的鲁棒性且很好地保留了原图像边缘等细节信息,提高了聚类精度,同时大大缩短了大幅图像的聚类时间。通过在合成图像、医学图像及自然图像上的大量实验,与传统算法对比该算法聚类性能明显提高,在图像分割上体现出了较好的分割效果。

关键词: 模糊C均值聚类, 空间距离, 鲁棒性