Computer Engineering and Applications ›› 2014, Vol. 50 ›› Issue (22): 11-16.

Previous Articles     Next Articles

Semisupervised immune clone selection graph partition algorithm

LIU Hanqiang   

  1. School of Computer Science, Shaanxi Normal University, Xi’an 710119, China
  • Online:2014-11-15 Published:2014-11-13

半监督免疫克隆选择图划分方法

刘汉强   

  1. 陕西师范大学 计算机科学学院,西安 710119

Abstract: Using some prior information can significantly improve the performance of clustering algorithms. In order to solve the NP-hard graph partitioning problems and utilize some prior information, a semisupervised immune clone selection graph partition algorithm the pairwise constraint information is introduced into the similarity measure in the graph partitioning algorithms, then the immune clonal selection algorithm is utilized to optimal the criterion of the graph partitioning based on the corresponding similarity matrix to obtain the solution. The experimental results on the USPS handwritten digit datasets and UMIST face datasets show that the novel method is effective.

Key words: pairwise constraint information, immune clonal selection algorithm, graph partition

摘要: 在聚类过程中利用一定量先验信息会显著提高聚类算法的性能。为了解决求解图谱划分方法NP难的问题并合理地利用一定量的先验信息,将成对限制信息引入到图谱划分方法中样本点的相似性测度,并在获得的相应的相似性矩阵的基础上,利用免疫克隆选择优化方法来优化图谱划分准则,提出了半监督免疫克隆选择图划分方法。USPS手写体数字集和UMIST人脸数据集识别的仿真实验证明了新方法的有效性。

关键词: 成对限制信息, 免疫克隆选择算法, 图划分