Computer Engineering and Applications ›› 2014, Vol. 50 ›› Issue (21): 175-179.

Previous Articles     Next Articles

Quantitative JPEG images steganalysis algorithm based on manifold learning

ZHANG Mingchao, CAI Xiaoxia, CHEN Hong   

  1. Electronic Engineering Institute, Hefei 230037, China
  • Online:2014-11-01 Published:2014-10-28

基于流形学习的JPEG图像定量隐写分析算法

张明超,蔡晓霞,陈  红   

  1. 电子工程学院,合肥 230037

Abstract: A quantitative steganalysis algorithm of JPEG images based on DCT coefficient statistical characteristics is proposed. Based on the research of DCT coefficient statistical model of JPEG images, the characteristic parameter[α], which can reflect the embedding capacity change rule, is extracted in the proposed method. With the LIB-SVM classifier, a kind of manifold learning algorithm is applied to feature extraction from the characteristic parameters including[α]. By this means, the change ratio of DCT coefficients caused by steganography can be estimated. The results show that compared with other traditional quantitative analysis, the algorithm gains higher estimation accuracy and stability.

Key words: quantitative steganalysis, feature extraction, manifold learning, JPEG

摘要: 提出了一种基于DCT系数统计特性的JPEG图像定量隐写分析算法。该算法在对JPEG图像DCT系数的统计模型进行研究的基础上,提取了能够反映嵌入容量变化规律的特征参数[α]。以特征参数[α]为基础,提出了基于流形学习的特征提取算法,通过LIB-SVM分类器进行训练,估计隐写对DCT系数的更改比率。实验结果表明,与传统的定量分析算法相比,提出的算法具有更高的估计准确率和稳定性。

关键词: 定量隐写分析, 特征提取, 流形学习, JPEG图像