Computer Engineering and Applications ›› 2013, Vol. 49 ›› Issue (18): 15-19.

Previous Articles     Next Articles

Moving objects detection algorithm based on clustering segmentation in wavelet domain

LIU Yingxia1, CHANG Faliang2   

  1. 1.Shandong Communication and Media College, Jinan 250200, China
    2.School of Control Science and Engineering, Shandong University, Jinan 250061, China
  • Online:2013-09-15 Published:2013-09-13

小波域基于聚类分割的运动目标检测算法

刘英霞1,常发亮2   

  1. 1.山东传媒职业学院,济南 250200
    2.山东大学 控制科学与工程学院,济南 250061

Abstract: Because of the contradiction between accuracy and real-time in monitoring system, the object detecting system in wavelet domain based on clustering segmentation algorithm is researched. A method to determine the adaptive threshold for high and low frequency components is presented. The judging criterion and the optimum threshold are deduced. The algorithm can remove the system noise, detect the object fast, and ensure the precision of system. It is proved by simulation and experiment results that the algorithm can detect the object accurately and realize a real-time system.

Key words: objects detection, wavelet domain, clustering segmentation, optimum threshold

摘要: 针对监控系统中目标检测精准性和实时性不能很好兼顾的问题,研究了小波域基于聚类分割算法的目标检测系统,在小波域分别给出了高频成分和低频成分自适应阈值的确定方法,推导出了判决准则和最佳阈值。利用该算法进行目标识别,可以去除系统噪声,快速检测出目标,并能保证系统的精准性。通过仿真实验对该算法进行验证,结果表明,该算法能够准确检测出目标,算法速度快,能保证系统的实时性。

关键词: 目标检测, 小波域, 聚类分割, 最佳阈值