Computer Engineering and Applications ›› 2012, Vol. 48 ›› Issue (34): 148-151.

Previous Articles     Next Articles

Pseudolite positioning algorithm based on least squares and EKF

FU Guangren1, CAO Zhengwen1,2, MI Linshan3, SUN Delu1, ZHANG Yingxian1   

  1. 1.College of Information Science and Technology, Northwest University, Xi’an 710127, China
    2.College of Electronic and Information, Northwestern Polytechnical University, Xi’an 710072, China
    3.Unit 96325 of PLA, China
  • Online:2012-12-01 Published:2012-11-30

基于最小二乘和EKF的伪卫星定位算法

付广仁1,曹正文1,2,米林山3,孙德禄1,张应贤1   

  1. 1.西北大学 信息科学与技术学院,西安 710127
    2.西北工业大学 电子信息学院,西安 710072
    3.中国人民解放军 96325部队

Abstract: The location of space-based pseudolite exists offset because of its own mobility and influence of external factors, such as flow, pressure, temperature, etc. Therefore, to accurately determine the location of space-based pseudolite is a premise for enhancement of the existing navigation system or formation of an independent navigation and positioning network. Aiming to Extended-Kalman filter requiring the initial value and the least squares method good at estimation, this paper puts forward a blending algorithm. In this blending algorithm, the algorithm uses the  reverse positioning theory to establish pseudorange observation equations, then the least squares method is used to calculate the initial value, and the space-based pseudolite is positioned by using Extended-Kalman filter. The simulation results show that the blending algorithm is better than the least squares method, and the positioning accuracy has been improved.

Key words: pseudolite, least squares method, extended-Kalman filter, reverse positioning

摘要: 空基伪卫星由于自身机动性以及受到诸如气流、压力、温度等外界因素的影响使得其位置存在着偏移。因此,精确确定空基伪卫星的位置是其增强现有导航系统或独立组网进行导航定位的前提。针对扩展Kalman滤波对初值的要求和最小二乘法估计性好的特点,提出了一种混合算法,该算法用逆定位原理建立伪距观测方程组并采用最小二乘法解算出初值,运用扩展Kalman滤波进行定位。仿真表明,混合算法优于最小二乘法,定位精度得到了提高。

关键词: 伪卫星, 最小二乘法, 扩展卡尔曼滤波, 逆定位