Computer Engineering and Applications ›› 2012, Vol. 48 ›› Issue (33): 207-211.

Previous Articles     Next Articles

Study of short-term load forecasting based on multi-kernel Support Vector Machine learning

KONG Qiang1, YAO Jiangang1, WANG Mengjian2, SUN Qian3, MAO Tian3, KANG Tong3   

  1. 1.College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
    2.Changde Shimen Electric Power Bureau, Changde, Hunan 415300, China
    3.Hunan HDHL Electric & Information Tech Co., Ltd, Changsha 410082, China
  • Online:2012-11-21 Published:2012-11-20

基于多重核学习支持向量机短期负荷预测研究

孔  强1,姚建刚1,汪梦健2,孙  谦3,毛  田3,康  童3   

  1. 1.湖南大学 电气与信息工程学院,长沙 410082
    2.常德石门电力局,湖南 常德 415300
    3.湖南湖大华龙电气与信息技术有限公司,长沙 410082

Abstract: In recent years, the SVM method in load forecasting application research has become the hot spot. This paper in view of the traditional standard support vector machine method in the prediction of time and prediction accuracy of deficiencies, firstly applies the MKL in power system short-term load forecasting field. The algorithm is realized through solving quadratic constrained programmer in the hybrid kernel space. Compared with the standard support vector regression algorithm, this method not only can improve the prediction performance, but also can reduce the number of support vectors. The practical example shows that, the method can effectively improve the prediction accuracy, shorten the prediction time, and with good generalization performance.

Key words: short-term load forecasting, multi-kernel learning, Support Vector Machines(SVM), kernel function

摘要: 近年来,支持向量机(SVM)方法在电力系统负荷预测领域的应用研究成为了热点,鉴于传统的标准支持向量机方法在预测时间和预测精度方面的不足,首次将多重核支持向量回归方法(Multiple Kernel Learning,MKL)应用于电力系统短期负荷预测领域。通过在混合核空间求解二次约束下的二次规划问题实现多重核支持向量回归算法。该方法较标准的支持向量回归算法,不仅可以提高预测性能,而且能够减少支持向量的个数。实际算例表明,该方法能够有效地提高预测精度,缩短预测时间,具有良好的泛化性能。

关键词: 短期负荷预测, 多重核学习, 支持向量机, 核函数