Computer Engineering and Applications ›› 2012, Vol. 48 ›› Issue (31): 216-219.

Previous Articles     Next Articles

Application of motor based on PSO and RBF neural network

LI Guosheng1, WANG Lianhong1, DAI Yuxing1, WANG Xingxian2   

  1. 1.College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
    2.Tengen Group Company Limited, Wenzhou, Zhejiang 325604, China
  • Online:2012-11-01 Published:2012-10-30

PSO-RBF神经网络在电机保护中的应用

李国胜1,王炼红1,戴瑜兴1,王兴仙2   

  1. 1.湖南大学 电气与信息工程学院,长沙 410082
    2.天正集团有限公司,浙江 温州 325604

Abstract: Because the motor can’t take action until the measured parameters meet or exceed the threshold, which lack of prediction control, a Radial Basis Function(RBF) Neural Network is designed based on Particle Swarm Optimization(PSO). Using strong time-frequency decomposition capabilities and outstanding singularity detection capability of wavelet transform, the eigenvector of fault can be gained;the connection weight is optimized by RBF Neural Network with PSO, which makes the Neural Network convergence faster and training shorter. According to simulation of fault by motor, fault is recognized by PSO-RBF Neural Network.

Key words: Radial Basis Function(RBF) Neural Network, wavelet transform, fault diagnosis, Particle Swarm Optimization(PSO)

摘要: 针对电机保护只在被测参数达到或者超过设定动作阈值才动作,缺乏预测控制能力,设计了一种基于粒子群的径向神经网络。利用小波变换的时频分解能力、优异的奇异检测能力进行故障特征分量的提取;用粒子群算法和径向神经网络配合优化权重,从而使网络收敛快,训练时间短。通过电动机故障进行仿真实验,结果表明PSO-RBF神经网络实现了对故障的识别。

关键词: 径向神经网络, 小波变换, 故障诊断, 粒子群算法