Computer Engineering and Applications ›› 2012, Vol. 48 ›› Issue (31): 82-88.

Previous Articles     Next Articles

Detecting method for DDoS attack based on wavelet analysis

REN Yilong1, LIU Yuan1,2   

  1. 1.School of Internet of Things Engineering, Jiangnan University, Wuxi, Jiangsu 214062, China
    2.School of Digital Media, Jiangnan University, Wuxi, Jiangsu 214062, China
  • Online:2012-11-01 Published:2012-10-30

一种基于小波分析的DDoS攻击检测方法

任义龙1,刘  渊1,2   

  1. 1.江南大学 物联网工程学院,江苏 无锡 214062
    2.江南大学 数字媒体学院,江苏 无锡 214062

Abstract: On the basis of analyzing the fractal property of network traffic and the features of Distributed Denial of Service(DDoS) attacks, a method of DDoS attack detection based on wavelet analysis is presented, and the attack detection model is designed. It judges the fractal features of network traffic, then adopts a method of variance of Hurst exponent based on wavelet analysis detect attack when it is self-similar or a method of Holder exponent based on multi-window wavelet analysis detect attack when it is multi-fractal. On the DARPA/Lincoln laboratory intrusion detection evaluation data set 2000, the experimental results show that this method is effective, and detection rate is high on the big background traffic DDoS attack, low-rate DDoS attack, and reflection DDoS attack, which is better than the traditional method.

Key words: Distributed Denial of Service(DDoS), self-similar, multi-fractal, Hurst parameter, Holder exponent, multi-window wavelet analysis

摘要: 通过对网络流量的分形特性和分布式拒绝服务(DDoS)的特点进行研究,提出了一种基于小波分析的DDoS攻击检测方法,并设计了该方法检测攻击的模型。对网络流量的分形特性进行判断,然后对具有自相似特性和多重分形特性的网络流量,分别采用基于小波分析的Hurst指数方差法和基于多窗口小波分析的Holder指数法检测DDoS攻击。通过对DARPA 2000年数据的实验表明,该方法能够有效地检测到攻击,对大流量背景攻击、低速率攻击、反射式攻击也都达到了较高的检测率,比传统方法有效。

关键词: 分布式拒绝服务, 自相似性, 多重分形, Hurst参数, Holder指数, 多窗口小波分析