Computer Engineering and Applications ›› 2012, Vol. 48 ›› Issue (25): 137-140.

Previous Articles     Next Articles

Experimental study of N-gram based Uyghur part of speech tagging

NIJAT Najmidin1,2, MAHMUD Mamat3, TURGUN Ibrahim4   

  1. 1.North China Electric Power University, Beijing 102206, China
    2.Xinjiang Electric Power Information Communications Co., LTD., Urumqi 830026, China
    3.Xinjiang Information Industry Co., LTD., Urumqi 830026, China
    4.Information Science and Engineering Technology Institute, Xinjiang University, Urumqi 830046, China
  • Online:2012-09-01 Published:2012-08-30

基于N元模型的维吾尔语词性标注实验研究

尼加提·纳吉米1,2,买合木提·买买提3,吐尔根·依布拉音4   

  1. 1.华北电力大学,北京 102206
    2.新疆电力信息通信有限责任公司,乌鲁木齐 830026
    3.新疆信息产业有限责任公司,乌鲁木齐 830026
    4.新疆大学 信息科学与工程学院,乌鲁木齐 830046

Abstract: There are many approaches to the problem of part-of-speech tagging, current Uyghur part-of-speech tagging is mainly based on rule based methods and does not achieve the state-of-art accuracy. A large scale of manually annotated Uyghur corpus and a number of well-conducted experiments are used to identify the efficiency of N-gram based part-of-speech tagging scheme for Uyghur texts. The N-gram language model parameters and data smoothing are analyzed, and the efficiency of Bigram and Trigram models are compared. The impacts of tag sets and size of training data on tagging accuracy are studied. The experiments show that N-gram based part-of-speech tagging for Uyghur texts has achieved good results.

Key words: part-of-speech tagging, N-gram model, Uyghur part -of -speech tagging

摘要: 词性标注有很多不同的研究方法,目前的维吾尔语词性标注方法都以基于规则的方法为主,其准确程度尚不能完全令人满意。在大规模人工标注的语料库的基础之上,研究了基于N元语言模型的维吾尔语词性自动标注的方法,分析了N元语言模型参数的选取以及数据平滑,比较了二元、三元文法模型对维吾尔语词性标注的效率;研究了标注集和训练语料规模对词性标注正确率的影响。实验结果表明,用该方法对维吾尔语进行词性标注有良好的效果。

关键词: 词性标注, N元模型, 维吾尔语词性标注