Computer Engineering and Applications ›› 2012, Vol. 48 ›› Issue (20): 55-58.

Previous Articles     Next Articles

Simulating fishing optimization algorithm for solving matrix eigenvalues

CHEN Jianrong1, CHEN Jianhua2, WANG Yong3, WEN Zhijuan1   

  1. 1.Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
    2.New Rural Cooperative Medical Management Center, Baise, Guangxi 533000, China
    3.College of Mathematics and Computer Science, Guangxi University for Nationalities, Nanning 530006, China
  • Online:2012-07-11 Published:2012-07-10

求解矩阵特征值的捕鱼算法

陈建荣1,陈建华2,王  勇3,文志娟1   

  1. 1.右江民族医学院,广西 百色 533000
    2.百色市右江区新型农村合作医疗管理中心,广西 百色 533000
    3.广西民族大学 数学与计算机科学学院,南宁 530006

Abstract: Based on the Gerschgorin disk theorem and the property of matrix eigenvalue, it translates the problem of solving eigenvalue into the minimization problem. With the Gerschgorin disk theorem to determinate the distribution region of matrix eigenvalues, it uses the simulating fishing optimization algorithm to solve approximate eigenvalues of matrix. The result of the experiment shows the accuracy and the convergence speed of this optimization algorithm are higher. So the algorithm represented by this paper is effective and feasible.

Key words: circular disk theorem, matrix, eigenvalues, fishing algorithm

摘要: 根据圆盘定理以及矩阵特征值的性质,将求解特征值的问题转化为最小化问题。通过圆盘定理确定寻优区域,用捕鱼算法在复数域内求解任意数值矩阵特征值的近似值。数值实验表明,该算法具有收敛速度快,计算精度高的优点。因此,该算法是有效和可行的。

关键词: 圆盘定理, 矩阵, 特征值, 捕鱼算法