Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (28): 10-12.DOI: 10.3778/j.issn.1002-8331.2009.28.003
• 博士论坛 • Previous Articles Next Articles
CHEN Zheng-li,CAO Huai-xin
Received:
Revised:
Online:
Published:
Contact:
陈峥立,曹怀信
通讯作者:
Abstract: Infimum of quantum effects is an important question in quantum information and quantum computation.For this question,it is proved to the Kadison’s conclusion by using a simple method,if A,B∈Her(B(H)),the infimum A∧B exists if and only if A and B are comparable.Secondly,it is discussed to the relationship between the existence of A∧B in B(H)+ and the existence of A∧B in ε(H).Finally,a counter-example is given to show that the existence of A∧B and A2∧B2 in ε(H),but A2∧B2≠(A∧B)2。
Key words: infimum, quantum effect, positive operator
摘要: 量子的下确界问题是量子计算和量子信息中的一个重要问题,对于这一问题,首先运用一种简单的方法证明了Kadison的一个结果:设A,B∈Her(B(H)),则A∧B在Her(B(H))存在当且仅当A和B可比较;然后讨论了B(H)+和Hilbert空间效应代数ε(H)中的下确界问题。最后,通过一个例子给出:对于两个量子效应A和B,虽然A∧B和A2∧B2在ε(H)中存在,但是A2∧B2≠(A∧B)2。
关键词: 下确界, 量子效应, 正算子
CLC Number:
O177.91
CHEN Zheng-li,CAO Huai-xin. Researches on infimum of Hilbert space quantum effect[J]. Computer Engineering and Applications, 2009, 45(28): 10-12.
陈峥立,曹怀信. 关于Hilbert空间量子效应下确界的研究[J]. 计算机工程与应用, 2009, 45(28): 10-12.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2009.28.003
http://cea.ceaj.org/EN/Y2009/V45/I28/10