Computer Engineering and Applications ›› 2012, Vol. 48 ›› Issue (4): 87-90.

• 网络、通信、安全 • Previous Articles     Next Articles

A new kind of SVM intrusion detection strategy for integration

LI Hanbiao1, LIU Yuan2   

  1. 1.School of IoT Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
    2.School of Digital Media, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:1900-01-01 Revised:1900-01-01 Online:2012-02-01 Published:2012-04-05

一种SVM入侵检测的融合新策略

李汉彪1,刘 渊2   

  1. 1.江南大学 物联网工程学院,江苏 无锡 214122
    2.江南大学 数字媒体学院,江苏 无锡 214122

Abstract: Intrusion detection is the indispensable part of computer network security, and anomaly detection system is hot in this research field. One of the existing detection methods, SVM maintains good condition of small-scale dataset. But the single SVM detection still exists the limitation that low rate of detection and high rate of false positives. Combined with evidential theory, it puts forward an anomaly detection method based on SVM fusion, effectively covers the limitation of the single SVM detection. Evaluation data profiling KDD99 experiments shows that this method increases the intrusion detection rate while reducing false positives, greatly improves the detection performance of the intrusion detection system.

Key words: intrusion detection, anomaly detection, Dempster-Shafer theory, Support Vector Machine(SVM)

摘要: 入侵检测是计算机网络安全中不可或缺的组成部分,其中异常检测更是该领域研究的热点内容。现有的检测方法中,SVM 能够在小样本条件下保持良好的检测状态。但是单一的SVM检测仍存在检测率不高、误报率过高等局限性。结合D-S证据理论,提出一种基于多SVM融合的异常检测方法,有效地弥补单个SVM检测的局限性。通过KDD99评测数据的评测实验表明,该方法有效地提高了入侵检测率的同时降低了误报率,大幅度地提高了入侵检测系统的检测性能。

关键词: 入侵检测, 异常检测, D-S证据理论, 支持向量机(SVM)