Computer Engineering and Applications ›› 2011, Vol. 47 ›› Issue (20): 121-125.

• 数据库、信号与信息处理 • Previous Articles     Next Articles

Survey on algorithm of mining frequent itemsets from uncertain data

WANG Jinmiao1,ZHANG Longbo1,DENG Qizhi1,WANG Fengying1,WANG Yong2   

  1. 1.School of Computer Science,Shandong University of Technology,Zibo,Shandong 255049,China
    2.School of Computer Science,Northwestern Polytechnical University,Xi’an 710072,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-07-11 Published:2011-07-11

不确定数据频繁项集挖掘方法综述

汪金苗1,张龙波1,邓齐志1,王凤英1,王 勇2   

  1. 1.山东理工大学 计算机学院,山东 淄博 255049
    2.西北工业大学 计算机学院,西安 710072

Abstract: Uncertain data is widespread in some application fields such as sensor network,Web applications and so on.Uncertain data mining has become a new hotspot.Uncertain data mining includes clustering,classification,frequent itemsets mining,outlier detection,etc.,in which frequent itemsets mining is one of the focus issues.This paper introduces two kinds of basic algorithms of mining frequent itemsets from traditional data:Apriori algorithm and FP-growth algorithm,and then analyses the methods proposed for mining frequent itemsets from uncertain data and uncertain data streams.A summary of research direction on uncertain data frequent itemsets mining is given.

Key words: uncertain data, frequent itemsets, data mining

摘要: 近几年来,不确定数据广泛出现在传感器网络、Web应用等领域中。不确定数据挖掘已经成为了新的研究热点,主要包括聚类、分类、频繁项集挖掘、孤立点检测等方面,其中频繁项集挖掘是重点研究的问题之一。综述了传统的频繁项集挖掘的两类基本算法,分析了在此基础上提出的适用于不确定数据以及不确定数据流的频繁项集挖掘的方法,并探讨了今后可能的研究方向。

关键词: 不确定数据, 频繁项集, 数据挖掘