Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (26): 118-120.DOI: 10.3778/j.issn.1002-8331.2009.26.035
• 数据库、信息处理 • Previous Articles Next Articles
XIE Fa-kui1,2,ZHANG Quan2
Received:
Revised:
Online:
Published:
Contact:
谢法奎1,2,张 全2
通讯作者:
Abstract: Semantic chunks segmentaion is an important task in the Hierarchical Network of Concepts(HNC) theory.To deal with this problem,this paper adopts a new method based on statistical modeling.And forms some feature templates with word,POS,concept,and selects features by a incremental way.Finally,construct a semantic chunks segmentation system based on a maximum entropy model.The experiment is taken on HNC corpus,and the result shows that the model works well,the open test precision and recall are 83.78% and 91.17% respectively.
Key words: maximum entropy model, sematic chunk, Hierarchical Network Concepts(HNC)
摘要: 语义块切分是HNC理论的重要课题,与以往的处理策略不同,采用统计建模的方法来解决这一问题。采用词语、词性、概念等信息组成特征模板,并应用增量方法进行特征选择,构建了一个基于最大熵模型的语义块切分系统。在HNC标注语料库上的测试取得了较好的效果,开放测试的正确率和召回率分别达到了83.78%和91.17%。
关键词: 最大熵模型, 语义块, 概念层次网络
CLC Number:
TP391
XIE Fa-kui1,2,ZHANG Quan2. Semantic chunks segmentation based on maximum entropy model[J]. Computer Engineering and Applications, 2009, 45(26): 118-120.
谢法奎1,2,张 全2. 基于最大熵模型的语义块切分[J]. 计算机工程与应用, 2009, 45(26): 118-120.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2009.26.035
http://cea.ceaj.org/EN/Y2009/V45/I26/118