Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (26): 30-33.DOI: 10.3778/j.issn.1002-8331.2009.26.009
• 研究、探讨 • Previous Articles Next Articles
ZHANG Xing-fang
Received:
Revised:
Online:
Published:
Contact:
张兴芳
通讯作者:
Abstract: In first-order form systems Lukms,Gödms,∏ms and L*ms,by introducing the concepts of class of interpretation models and α-logical effective formulas under many-sorted first-order fuzzy language,the theory of class of interpretation models is presented;and then,based on above theory this paper discusses the relation between fuzzy reasoning(CRI arithmetic and Triple I arithmetic) and theory Г-reasoning,consequently the base of theory for fuzzy reasoning is established,and a new fuzzy reasoning arithmetic are given.
Key words: fuzzy reasoning, many-sorted first-order fuzzy language, interpretation model class, α-logical effective formulas
摘要: 首先在多类(many-sorted)一阶形式系统Lukms、Gödms,∏ms和L*ms中通过引入多类一阶模糊语言Lms的解释模型类及基于解释模型类的α-逻辑有效公式的概念,建立了多类一阶模糊语言的解释模型类理论;然后,基于上述理论探讨了模糊推理算法(CRI及三I算法)与其理论Г-推理的关系,从而进一步奠定了模糊推理的理论基础,同时得到一种新型的模糊推理算法,称为极小三I算法。
关键词: 模糊推理, 多类一阶模糊语言, 解释模型类, α-逻辑有效公式
CLC Number:
O141.1
ZHANG Xing-fang. Theory of class of interpretation models and infinitesimal Triple I arithmetic[J]. Computer Engineering and Applications, 2009, 45(26): 30-33.
张兴芳. 解释模型类理论及其极小三I-算法[J]. 计算机工程与应用, 2009, 45(26): 30-33.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2009.26.009
http://cea.ceaj.org/EN/Y2009/V45/I26/30