Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (14): 53-55.DOI: 10.3778/j.issn.1002-8331.2009.14.014

• 研究、探讨 • Previous Articles     Next Articles

Use adaptation sequence modified inertia weight particle swarm optimization

TAO Jun-bo1,2,WU Zhang-dun1,CAI De-suo1,3   

  1. 1.Department of Civil and Architecture Engineering,Guangxi University,Nanning 530004,China
    2.Fujian College of Water Conservancy and Electricity Power,Yong’an,Fujian 366000,China
    3.College of Civil and Hydropower Engineering,Three Gorges University,Yichang,Hubei 443002,China
  • Received:2008-08-19 Revised:2008-09-20 Online:2009-05-11 Published:2009-05-11
  • Contact: TAO Jun-bo

适应度排序改进惯性权重的粒子群算法

陶俊波1,2,吴彰敦1,蔡德所1,3   

  1. 1.广西大学 土木建筑工程学院,南宁 530004
    2.福建水利电力职业技术学院,福建 永安 366000
    3.三峡大学 土木水电学院,湖北 宜昌 443002
  • 通讯作者: 陶俊波

Abstract: It has modified PSO inertia weight.The inertia weight not only through its longitudinal linear change by generation;but also think about current and up to now best results of particles adaptation sequence’s lateral linear change which rearrange by adaptation good or bad.The lateral linear upper bound un-change and lower bound become small,so the lateral linear range expend gradually.The inertia weight will generate more negative value by generation increasing.That obtain use adaptation sequence modified inertia weight particle swarm optimization(ASMIWPSO).It has been through simulation to explain ASMIWPSO.And make contrastive analysis on the results of PSO and ASMIWPSO by Rastrigrin function.It shows that the ASMIWPSO has better optimization results.

Key words: particle swarm optimization, inertia weight, adaptation sequence

摘要: 改进PSO算法的惯性权重。惯性权重不仅随代数纵向线性变化,也根据当前和迄今粒子的适应度重排序横向线性变化。横向线性变化上限不变,下限逐渐减小,使得横向线性变化数值范围随代数逐渐增大。惯性权重数值随着代数逐渐取负,并且适应度差的粒子取负的几率更大。得到基于粒子适应度排序改进惯性权重的粒子群算法(ASMIWPSO算法)。通过仿真学解释ASMIWPSO算法。Rastrigrin函数测试对比ASMIWPSO算法、PSO算法,说明ASMIWPSO算法具有更好的优化结果。

关键词: 粒子群算法, 惯性权重, 适应度排序