Computer Engineering and Applications ›› 2010, Vol. 46 ›› Issue (32): 17-20.DOI: 10.3778/j.issn.1002-8331.2010.32.005

• 博士论坛 • Previous Articles     Next Articles

Improved LDA algorithm and research on rank limitation

LIU Zhong-bao1,2,WANG Shi-tong1   

  1. 1.School of Information,Jiangnan Univerisity,Wuxi,Jiangsu 214122,China
    2.Department of Information Engineering,Business College of Shanxi University,Taiyuan 030031,China
  • Received:2009-07-22 Revised:2009-09-10 Online:2010-11-11 Published:2010-11-11
  • Contact: LIU Zhong-bao

改进的LDA算法及秩限制问题研究

刘忠宝1,2,王士同1   

  1. 1.江南大学 信息学院,江苏 无锡 214122
    2.山西大学 商务学院 信息工程系,太原 030031
  • 通讯作者: 刘忠宝

Abstract: Improved Linear Discriminant Analysis(ILDA) is presented to improve the classification performance of LDA by modifying the original Fisher discriminant criterion,which aims at not only overcoming the rank limitaiton of LDA,but also solving the small size sample problem.This paper mainly discusses the effectiveness of ILDA in overcoming rank limitation.Experiments on some publicly available datasets and one artificial dataset show that the proposed algorithm ILDA has good performance and arrives at the target of getting much more discriminant features.

Key words: Linear Discriminant Analysis(LDA), between-class scatter matrix, within-class scatter matrix, rank limitation

摘要: 针对经典线性判别分析中存在的秩限制和小样本问题,通过改进原有的Fisher准则,提出了一种改进的线性判别分析算法ILDA,以克服秩限制问题并同时解决了小样本问题。重点研究了ILDA在解决样本类间离散度矩阵秩限制方面的有效性。在多个国际标准数据集和人工数据集上实验的结果表明ILDA算法不仅有效地突破了秩限制,达到提取更多判别特征的目的,而且具有良好的识别效果。

关键词: 线性判别分析, 类间离散度矩阵, 类内离散度矩阵, 秩限制问题

CLC Number: