Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (8): 149-152.DOI: 10.3778/j.issn.1002-8331.2009.08.046

• 数据库、信号与信息处理 • Previous Articles     Next Articles

Novel reduction algorithm based on deciding expert knowledge

YUAN Jun-peng1,SU Jie2,WANG Hong-sheng3   

  1. 1.Institute of Scientific and Technical Information of China,Beijing 100038,China
    2.School of Management Science and Engineering,Central University of Finance and Economics,Beijing 100081,China
    3.Yantai Dongfang Electronics Information Industry Co.,Ltd,Yantai,Shandong 264000,China
  • Received:2008-01-23 Revised:2008-04-03 Online:2009-03-11 Published:2009-03-11
  • Contact: YUAN Jun-peng

新的专家主导的粗糙集属性约简算法

袁军鹏1,宿 洁2,王洪升3   

  1. 1.中国科学技术信息研究所,北京 100038
    2.中央财经大学 管理科学与工程学院,北京 100081
    3.烟台东方电子信息产业股份有限公司,山东 烟台 264000
  • 通讯作者: 袁军鹏

Abstract: Reduction is an important concept introduced by rough sets theory,and seeking the Minimum Reduction(MR) is a NP-hard problem.This paper presents a novel reduction algorithm to search the optimal solution for MR.Based on a new 0-1 distinguish matrix and the mode of man-machine cooperation,a man-machine cooperative intelligent algorithm(Reduction Based on Deciding Expert Knowledge Algorithm,RBDEKA) is proposed for attribute reduction.Finally,the empirical analysis result on the Micro-Electromechanical Systems(MEMS) field shows that the RBDEKA is feasible and efficient.

Key words: rough sets, 0-1 distinguish matrix, reduction, man-machine cooperation

摘要: 最小约简问题是粗糙集理论中的一类NP-hard问题。在总结属性约简经典算法的基础上,采取“人机结合”的思想,将领域专家的智慧与基于0-1判别矩阵的模拟退火算法有效集成,提出基于专家主导的粗糙集属性约简算法,并在微机电系统领域对本文提出的算法进行了实证分析,结果表明该算法是有效的、可靠的。

关键词: 粗糙集, 0-1判别矩阵, 属性约简, 人机结合