Computer Engineering and Applications ›› 2008, Vol. 44 ›› Issue (29): 191-192.DOI: 10.3778/j.issn.1002-8331.2008.29.054

• 图形、图像、模式识别 • Previous Articles     Next Articles

Color image segmentation method based on improved K-means clustering algorithm

LIU Ying-ying,SHI Yue-xiang,MO Hao-lan   

  1. Information Engineering College of Xiangtan University,Xiangtan,Hunan 411105,China
  • Received:2007-11-20 Revised:2008-02-25 Online:2008-10-11 Published:2008-10-11
  • Contact: LIU Ying-ying

基于改进K-均值算法在彩色图像分割中的应用

刘盈盈,石跃祥,莫浩澜   

  1. 湘潭大学 信息工程学院,湖南 湘潭 411105
  • 通讯作者: 刘盈盈

Abstract: How to effectively segment objects in the color images is the key point in the computer vision and image analysis.This paper presents repeated using the optimal threshold for a roughly extract the largest target area of the color image.Then improved K_means clustering algorithm is used to improve the accuracy of the segmentation from the target area.Experimental results show that this method can effectively extract color image of the object.It is also a certain degree of robustness to the noise image.

Key words: image segmentation, optimal threshold, K_mean clustering algorithm, robustness

摘要: 如何对彩色图像中的目标进行有效的分割是计算机视觉和图像分析的重点和难点,文中提出不断对彩色图像采用最优阈值化进行一次粗分割提取最大目标区域,再利用改进的K-均值算法对提取目标子区域进行精确分割。实验结果表明该方法对彩色图像能够有效地提取目标物体,并对噪声图像具有一定的鲁棒性。

关键词: 图像分割, 最优阈值化, K-均值算法, 鲁棒性