Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (6): 170-172.DOI: 10.3778/j.issn.1002-8331.2009.06.048

• 数据库、信号与信息处理 • Previous Articles     Next Articles

Coarse classification scheme for Chinese character based on RBF neural network

YANG Fang,LI Hong-rui,TIAN Xue-dong   

  1. College of Mathematics and Computer Science,Hebei University,Baoding,Hebei 071002,China
  • Received:2008-01-16 Revised:2008-04-14 Online:2009-02-21 Published:2009-02-21
  • Contact: YANG Fang

基于RBF神经网络的汉字粗分类方法

杨 芳,李红睿,田学东   

  1. 河北大学 数学与计算机学院,河北 保定 071002
  • 通讯作者: 杨 芳

Abstract: Coarse classification is the key to improve recognition speed.An improved coarse classification scheme based on RBF(Radial Basis Function) neural network for Chinese character is presented in this paper.Four-side code feature and gross meshed feature are respectly applied as coarse feature to compare in this experiment.The GB2312-80 first-level Chinese character samples including printed and handwritten form are objects in this experiment.Experiment results show that proposed method has excellent performance on coarse classification in contrast to Euclidean distance as classifier used in conventional method.

Key words: Radial Basis Function(RBF) neural network, coarse classification, four-side code, gross meshed feature

摘要: 粗分类是提高汉字识别速度的主要手段。将RBF(Radial Basis Function neural network)神经网络用于汉字粗分类,采用汉字四边码和粗网格作为汉字粗分类的特征以进行比较。分别对GB2312-80一级字库印刷体及手写体进行实验,实验结果表明将RBF神经网络用于汉字粗分类比通常使用的欧式距离作为分类器有较好的性能。

关键词: RBF神经网络, 粗分类, 四边码, 粗网格