Computer Engineering and Applications ›› 2010, Vol. 46 ›› Issue (36): 105-108.DOI: 10.3778/j.issn.1002-8331.2010.36.029

• 网络、通信、安全 • Previous Articles     Next Articles

Multi-signers strong designated verifier signature scheme

LI Nan1,WANG Shang-ping1,2,ZHANG Ya-ling2,WANG Xi3   

  1. 1.Faculty of Science,Xi’an University of Technology,Xi’an 710054,China
    2.Faculty of Computer,Xi’an University of Technology,Xi’an 710054,China
    3.Foundation Department,Xi’an Communication Institute,Xi’an 710106,China
  • Received:2010-04-12 Revised:2010-06-12 Online:2010-12-21 Published:2010-12-21
  • Contact: LI Nan

多个签名者强指定验证者签名方案

李 楠1,王尚平1,2,张亚玲2,王 溪3   

  1. 1.西安理工大学 理学院,西安 710054
    2.西安理工大学 计算机学院,西安 710054
    3.西安通信学院 基础部,西安 710106
  • 通讯作者: 李 楠

Abstract: Designated verifier signature schemes can be used to realize a new destination that a signer can choose a desired verifier to verify the availability of the signatures,which can be used to prevent the abuse of the signature.An ID-based multi-signers strong designated verifier signature scheme is proposed from bilinear pairings.In the new scheme,the multi-signers send the hidden private key and the hash of the message to the signature collector,making signature collector can not use any of the singer’s private key to forge signature and can not sign any message.The scheme reduces the time and the length of the signature and avoids the too large possibility of the rights of a single singer.The signature system can be used for joint petition.This paper proves that the scheme is secure in the sense of unforgeability and untransferability notions for the new schemes,under the hypothesis of BDH and DLP.

Key words: ID-based, multi-singers, bilinear pairings

摘要: 指定验证者签名可以实现签名者选择所期望的验证者验证签名的有效性,从而达到控制数字签名任意传播的目的,基于双线性对构造了一个新的基于身份的多签名者强指定验证者签名方案。新方案中多个签名者将隐藏的私钥以及进行哈希的消息发送给签名收集者,使得签名收集者无法利用签名者的私钥任意伪造签名,也不能对任意的消息进行签名,由签名收集者进行的多签名者强指定验证者签名方案缩短了签名时间和签名长度,并且减小了单个签名者权利过大的可能性。该签名体制可以用于多人联名上书的情况。新方案在BDH问题和DLP问题的困难性假设下,在基于身份的多签名者强指定验证者签名的不可伪造性和不可转发性概念下是安全的。

关键词: 基于身份, 多签名者, 双线性对

CLC Number: