Computer Engineering and Applications ›› 2008, Vol. 44 ›› Issue (32): 132-133.DOI: 10.3778/j.issn.1002-8331.2008.32.039
• 数据库、信号与信息处理 • Previous Articles Next Articles
PENG Li-hong,LIAO Bo,LIU Hao
Received:
Revised:
Online:
Published:
Contact:
彭利红,廖 波,刘 昊
通讯作者:
Abstract: The purpose of this study is to evaluate a novel clustering technique for clustering and detecting the isolated points in protein-protein interaction network,which iteratively refines clusters based on a combination of the K-means clustering algorithm and the Arithmetic Average Minimum Value(AAMV).The result is that the algorithm is found to be effective at detecting clusters and identifying the isolated points in the protein-protein interaction network graph with regard to human Alzheimer’s Disease.The algorithm outperforms competing approaches and is capable of effectively predicting the function-unknown protein function.
Key words: protein-protein interaction network graph, Arithmetic Average Minimum Value(AAMV), K-means clustering method, criterion function
摘要: 依据人类AD(Alzheimer’s Disease)相关蛋白质相互作用网络图,利用基于算术平均最小值——AAMV(Arithmetic Average Minimum Value)的K-means聚类方法对蛋白质进行聚类并预测4个孤立蛋白质的功能。分析结果表明:所得结果与用Maryland Bridge 法及Korbel法所得结果非常相似。
关键词: 蛋白质相互作用网络图, 算术平均最小值, K-means聚类方法, 准则函数
PENG Li-hong,LIAO Bo,LIU Hao. Clustering method based on protein-protein interaction network graph[J]. Computer Engineering and Applications, 2008, 44(32): 132-133.
彭利红,廖 波,刘 昊. 基于蛋白质相互作用网络图的聚类方法[J]. 计算机工程与应用, 2008, 44(32): 132-133.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2008.32.039
http://cea.ceaj.org/EN/Y2008/V44/I32/132