Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (8): 194-197.DOI: 10.3778/j.issn.1002-8331.2009.08.059

• 工程与应用 • Previous Articles     Next Articles

Study on fault diagnosis of electronic system using Bayesian network

XU Li-jia1,2,WANG Hou-jun1,LONG Bing1   

  1. 1.Institute of Automation Engineering,University of Electronic Science and Technology of China,Chengdu 610054,China
    2.Institute of Information and Engineering Technology,Sichuan Agriculture University,Ya’an,Sichuan 625014,China
  • Received:2008-09-01 Revised:2008-10-10 Online:2009-03-11 Published:2009-03-11
  • Contact: XU Li-jia

贝叶斯网络在电子系统故障诊断中的应用研究

许丽佳1,2,王厚军1,龙 兵1   

  1. 1.电子科技大学 自动化工程学院,成都 610054
    2.四川农业大学 信息与工程技术学院,四川 雅安 625014
  • 通讯作者: 许丽佳

Abstract: Electronic systems often own complex structures,and their sub-modules are interactional and anfractuous.Furthermore number of testing nodes is usually less and the testing data are incomplete.Aiming at these circumstances,the paper presents a new fault diagnosis approach based on Bayesian network for an electronic power.Firstly based on the original structure of electronic power,authors gain cause-result graph and discretize all testing signals;then a Bayesian network is built for fault diagnosis and its parameters are studied through historical data;finally the Bayesian network is applied to diagnose true fault by using the actual data.Simulation experiments verify the effectiveness of the proposed approach,which provides a new way for fault diagnosis of electronic systems.

Key words: Bayesian network, fault diagnosis, parameter studying

摘要: 电子系统大多结构复杂,各组成模块存在错综复杂、相互影响的关系,另外测点较少且测点数据常常是不完备的。针对此类情况,以某电源系统为研究对象,提出了基于贝叶斯网络的电子系统故障诊断方法。首先依据系统的结构获得其因果图,并对各测点信号进行离散化处理;其次建立用于故障诊断的贝叶斯网络模型,并且根据历史数据完成该网络的参数学习,最后利用获得的事实来实现故障的诊断。仿真结果验证了该方法的有效性,为电子系统的故障诊断提出了一种新的思路。

关键词: 贝叶斯网络, 故障诊断, 参数学习