Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (14): 228-230.DOI: 10.3778/j.issn.1002-8331.2009.14.070

• 工程与应用 • Previous Articles     Next Articles

Aero-engine dual-variable decoupling control with single neuron

MA Jing,WANG Yong-gen   

  1. School of Power and Energy,Northwest Polytechnic University,Xi’an 710072,China
  • Received:2008-03-19 Revised:2008-06-26 Online:2009-05-11 Published:2009-05-11
  • Contact: MA Jing

航空发动机的单神经元双变量解耦控制

马 静,王镛根   

  1. 西北工业大学 动力与能源学院,西安 710072
  • 通讯作者: 马 静

Abstract: Aero-engine is a kind of multi-variable plant,which is difficult to control with the possible interaction between input variable and output variables.This paper introduces a multi-variable decoupling control with single neuron,adopting the modified Hebb learning algorithm to fast convergence.The turbojet engine is further simulated on-the-ground and in-the-air,which proves several advantages of this control system such as complete decoupling,fast response,small static error,and easy algorithm.And the author concludes that using two single neurons as Dual-Variable controller is effective to reduce the number of controller all over the flight envelope.

Key words: aircraft turbojet engine, single neuron, dual-variable decoupling control, modified Hebb algorithm

摘要: 针对航空发动机这样的多变量控制对象,要解决的突出问题是输入变量对输出变量的交叉影响,介绍了单神经元进行多变量系统解耦控制的基本方法,采用改进的Hebb学习算法以加速收敛。对某涡喷发动机的数学模型进行了双变量单神经元PID控制仿真研究,结果表明:采用此算法构成的神经网络PID控制对地面模型和高空模型都具有完全解耦、响应速度快、稳态误差小、算法简单的优点;用两个神经元作为双变量控制器,可以使整个飞行包线内的控制器数目明显减少。

关键词: 涡喷发动机, 单神经元, 双变量解耦控制, 改进的Hebb学习算法