Computer Engineering and Applications ›› 2008, Vol. 44 ›› Issue (28): 53-54.DOI: 10.3778/j.issn.1002-8331.2008.28.018

• 理论研究 • Previous Articles     Next Articles

Application of Particle Swarm Optimization method in function optimization and parameter analysis

LEI Xiu-juan1,2,SHI Zhong-ke2   

  1. 1.College of Computer Science,Shaanxi Normal University,Xi’an 710062,China
    2.College of Automation,Northwestern Polytechnical University,Xi’an 710072,China
  • Received:2007-11-15 Revised:2008-01-04 Online:2008-10-01 Published:2008-10-01
  • Contact: LEI Xiu-juan

粒子群优化算法在函数优化中的应用及参数分析

雷秀娟1,2,史忠科2   

  1. 1.陕西师范大学 计算机科学学院,西安 710062
    2.西北工业大学 自动化学院,西安 710072
  • 通讯作者: 雷秀娟

Abstract: To analyse the performance of particle swarm optimization method deeply,this paper uses two basic improved strategies to experiment several standard test functions optimization problem in the MATLAB 7.0 software,one of the strategies is linear inertia weight reduction only,the other is rejoining the constriction factor.The online and off-line performances are given to the two strategies.In order to guide the parameter selecting,we present the effect of convergence on different parameter combination through many charts.The conclusion is that the convergence of the strategy of inertia weight reduction adding the constriction factor is better than that of the strategies of linear inertia weight reduction only.And if we adopt fixed inertia weight w,the convergence rate is more rapid when the w is lesser.

Key words: Particle Swarm Optimization(PSO), inertia weight, constriction factor, convergence

摘要: 为了更深入地分析探讨粒子群优化算法的性能,采用两种基本改进策略在MATLAB 7.0中对几个典型测试函数的优化问题进行了实验,即单独采用线性递减惯性权重策略以及在其基础上再加入收缩因子法,给出了这两种策略下函数的在线性能、离线性能变化图。为指导参数选取,用图示方式给出了不同参数组合对收敛性的影响。结论是:采用线性递减惯性权重策略加上收缩因子法比单独采用线性递减惯性权重策略的收敛性能好。若取固定惯性权重w,则w越小,收敛速度越快。

关键词: 粒子群优化, 惯性权重, 收缩因子, 收敛性