Computer Engineering and Applications ›› 2008, Vol. 44 ›› Issue (19): 118-120.
• 网络、通信、安全 • Previous Articles Next Articles
ZHANG Jia-chao
Received:
Revised:
Online:
Published:
Contact:
张家超
通讯作者:
Abstract: For improving classific precision of network intrusion detection model,reducing the number of training data set and learning time,Based on Support Vector Regression(SVR),a new supervisal algorithm using Lagrange Support Vector Regression(LSVR) is proposed.The experimental results using KDD CUP 1999 data set show that LSVR has better generalization ability,quicker iterative speed,higher detection accuracy,and lower error rate than SVR.
摘要: 为提高网络入侵检测系统中检测算法的分类精度,降低训练样本及学习时间,在基于支持向量回归机的基础上,提出一种新的利用Lagrange支持向量回归机设计IDS的检测算法。使用KDD CUP 1999数据集进行仿真实验,结果表明该算法较基于支持向量回归机的检测算法具有更良好的泛化性能、更快的迭代速度、更高的检测精度和更低的误报率。
ZHANG Jia-chao. Supervisal algorithm design of IDS based on Lagrange Support Vector Regression[J]. Computer Engineering and Applications, 2008, 44(19): 118-120.
张家超. 利用Lagrange支持向量回归机设计IDS的检测算法[J]. 计算机工程与应用, 2008, 44(19): 118-120.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/
http://cea.ceaj.org/EN/Y2008/V44/I19/118