Computer Engineering and Applications ›› 2008, Vol. 44 ›› Issue (8): 187-188.
• 数据库与信息处理 • Previous Articles Next Articles
YU Hong-tao,DUAN Jun-yi,DU Zhao-feng
Received:
Revised:
Online:
Published:
Contact:
于洪涛,段军义,杜照丰
通讯作者:
Abstract: Clustering display of search results has been proved an efficient way to organize the Web resources.However,for a given query,clustering results reached by any user are totally identical.A novel search method based on clustering is proposed,which is a modified version of k-means algorithm.The results generated from usual search engine go through a clustering stage based on user interests to create user-specific clusters.Experiments show that it can offer user-specific information needs,improve clustering effectiveness and searching efficiency.
摘要: 实践证明聚类技术是改进搜索结果显示方式的一种有效手段。然而,目前的聚类方法没有考虑到用户兴趣,对于相同的查询,返回给所有用户同样的聚类结果。由此提出一种个性化聚类检索方法。该方法改进了k-means算法,利用该算法对传统搜索引擎返回的结果结合用户兴趣进行聚类,返回针对特定用户的网页簇。实验证明该方法能够提供个性化服务,改善了聚类的效果,提高了用户的检索效率。
YU Hong-tao,DUAN Jun-yi,DU Zhao-feng. Personalized search based on clustering[J]. Computer Engineering and Applications, 2008, 44(8): 187-188.
于洪涛,段军义,杜照丰. 一种基于聚类技术的个性化信息检索方法[J]. 计算机工程与应用, 2008, 44(8): 187-188.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/
http://cea.ceaj.org/EN/Y2008/V44/I8/187