Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (35): 233-235.DOI: 10.3778/j.issn.1002-8331.2009.35.070
• 工程与应用 • Previous Articles Next Articles
XU Yi-shan,ZENG Bi,YIN Xiu-wen,LU Bo-sheng
Received:
Revised:
Online:
Published:
Contact:
徐以山,曾 碧,尹秀文,卢博生
通讯作者:
Abstract: BP Neural Network is an effective method for prediction so far,but there are some self-determinations in its practical applications,so a new BP Neural Network based on improved Particle Swarm Optimization(PSO) is proposed.The capacity of solving nonlinear problems of this algorithm is enhanced effectively through adjusting inertia factor ω dynamically.At the same time,the convergence speed of this algorithm and the capacity of searching global extremum is increased.The improved BP Network model is built up,and the rainfall in a certain city is analyzed by this model and gradually regression method.Evidence shows this model has high accuracy and stability.
摘要: 目前BP神经网络是一种有效的预测方法,但在实际应用当中存在着一些自身的缺点,为此提出了一种基于改进粒子群算法的BP神经网络。通过动态调整粒子群算法中的惯性因子ω,有效地增强了算法对非线性问题的处理能力,同时提高了算法的收敛速度和搜索全局最优值的能力。建立改进后的BP网络模型,通过该模型和逐步回归方法对某市降水量进行实例分析。分析结果表明,改进后的BP网络模型具有较高的准备预报能力和稳定性。
CLC Number:
TP183
XU Yi-shan,ZENG Bi,YIN Xiu-wen,LU Bo-sheng. BP Neural Network and its applications based on improved PSO[J]. Computer Engineering and Applications, 2009, 45(35): 233-235.
徐以山,曾 碧,尹秀文,卢博生. 基于改进粒子群算法的BP神经网络及其应用[J]. 计算机工程与应用, 2009, 45(35): 233-235.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2009.35.070
http://cea.ceaj.org/EN/Y2009/V45/I35/233