Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (18): 146-148.DOI: 10.3778/j.issn.1002-8331.2009.18.044

• 数据库、信息处理 • Previous Articles     Next Articles

Research on ant colony clustering combination method

XING Jie-qing1,2,ZHU Qing-sheng1,GUO Ping1   

  1. 1.Department of Computer Science,Chongqing University,Chongqing 400044,China
    2.Department of Modern Education Technology,Qiongtai Teachers College,Haikou 571100,China
  • Received:2008-04-10 Revised:2008-07-14 Online:2009-06-21 Published:2009-06-21
  • Contact: XING Jie-qing

蚁群聚类组合方法的研究

邢洁清1,2,朱庆生1,郭 平1   

  1. 1.重庆大学 计算机学院,重庆 400044
    2.海南省琼台师范高等专科学校 现代教育技术系,海口 571100
  • 通讯作者: 邢洁清

Abstract: The ant-based clustering algorithm is applicated in the data mining community.Due to the disadvantage of the classical algorithm,this paper presents an improved ant colony clustering combination method.The paper introduces K-means to take the ant colony algorithm the pre-computation process.Through K-means,it definites cluster center fastly and sketchily,and takes the starting value using the K-means method result,again executes the ant colony algorithm cluster. It solves the ant colony algorithm for early slow convergence effectively.

摘要: 基于蚁群算法的聚类算法已经在当前的数据挖掘研究中得到应用。针对蚁群聚类算法早期出现的缺点,提出一种蚁群聚类组合方法使其得以改进。改进思路是引入K-means作为蚁群算法的预处理过程。通过K-means快速、粗略地确定聚类中心,利用K-means方法的结果作为初值,再进行蚁群算法聚类。有效地解决了蚁群算法早期收敛过慢等问题。