Computer Engineering and Applications ›› 2011, Vol. 47 ›› Issue (1): 215-216.DOI: 10.3778/j.issn.1002-8331.2011.01.061

• 工程与应用 • Previous Articles     Next Articles

Research of rotor faults in motor based on particle swarm optimization

YANG Tongguang1,JIANG Xinhua1,2   

  1. 1.College of Information Science and Engineering,Central South University,Changsha 410075,China
    2.Fujian University of Technology,Fuzhou 350007,China
  • Received:2010-04-28 Revised:2010-11-09 Online:2011-01-01 Published:2011-01-01
  • Contact: YANG Tongguang

基于粒子群优化算法电机转子故障诊断研究

阳同光1,蒋新华1,2   

  1. 1.中南大学 信息科学与工程学院,长沙 410075
    2.福建工程学院,福州 350007
  • 通讯作者: 阳同光

Abstract: A rotor fault diagnosis of induction motor is presented based on particle swarm optimization.To identify rotor resistance of induction under fault condition,rotor flux error is used as fitness of all particles in the population,and the parameter of rotor flux current model is adaptively adjusted.The simulation shows the insensitivity of the technique to load variation,supply voltage variation,and the advantage of high operation efficiency,fast convergence and good identification results.

摘要: 提出一种基于反向粒子群优化算法感应电机转子故障诊断方法。将转子磁链误差作为粒子群的适应度函数,通过反向粒子群优化算法自适应调整转子磁链电流模型的参数,辨识故障状态下感应电机的转子电阻。仿真结果表明,该方法对电源电压、负载波动具有较强的抗干扰能力,运算效率高,收敛速度快,具有良好的辨识效果。

CLC Number: