Computer Engineering and Applications ›› 2010, Vol. 46 ›› Issue (25): 78-81.DOI: 10.3778/j.issn.1002-8331.2010.25.023
• 网络、通信、安全 • Previous Articles Next Articles
QIU Mi1,YANG Ai-min1,2,LIU Yong-ding1,HE Zhen-kai1
Received:
Revised:
Online:
Published:
Contact:
邱 密1,阳爱民1,2,刘永定1,何震凯1
通讯作者:
Abstract: As network applications such as P2P rapidly increase,which makes the efficiency of traditional network traffic classification method that is based on the port and payload reduces.In this paper,it introduces a FCBF feature selection method,which can choose the best feature subsets.It uses Bayes learning algorithm to classify the network.The result of experiment shows a better classification accuracy.
摘要: 随着网络应用(如P2P)的快速增长,使得传统的基于端口与有效载荷的网络流量分类方法效率大大降低。基于FCBF特征选择方法选择最优特征子集,研究使用贝叶斯学习方法对网络流量进行分类;实验结果显示提出的方法取得了较好的分类准确率。
CLC Number:
TP309
QIU Mi1,YANG Ai-min1,2,LIU Yong-ding1,HE Zhen-kai1. Application of Bayes learning algorithm to classify network traffic[J]. Computer Engineering and Applications, 2010, 46(25): 78-81.
邱 密1,阳爱民1,2,刘永定1,何震凯1. 使用贝叶斯学习算法分类网络流量[J]. 计算机工程与应用, 2010, 46(25): 78-81.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2010.25.023
http://cea.ceaj.org/EN/Y2010/V46/I25/78